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ABSTRACT
Gaussian geostatistical space-time modeling is an effective tool
for performing statistical inference of field data evolving in space
and time, generalizing spatial modeling alone at the cost of the
greater complexity of operations and storage, and pushing geosta-
tistical modeling even further into the arms of high-performance
computing. It makes inferences for missing data by leveraging
space-time measurements of one or more fields. We propose a high-
performance implementation of a widely applied space-time model
for large-scale systems using a two-level parallelization technique.
At the inner level, we rely on state-of-the-art dense linear algebra
libraries and parallel runtime systems to perform complex matrix
operations required to evaluate the maximum likelihood estimation
(MLE). At the outer level, we parallelize the optimization process
using a distributed implementation of the particle swarm optimiza-
tion (PSO) algorithm. At this level, parallelization is accomplished
using MPI sub-communicators, such that the nodes in each sub-
communicator perform a single MLE iteration at a time. To evaluate
the effectiveness of the proposed methodology, we assess the ac-
curacy of the newly implemented space-time model on a set of
large-scale synthetic space-time datasets. Moreover, we use the
proposed implementation to model two air pollution datasets from
the Middle East and US regions with 550 spatial locations ×730
time slots and 945 spatial locations ×500 time slots, respectively.
The evaluation shows that the proposed approach satisfies high
prediction accuracy on both synthetic datasets and real particulate
matter (PM) datasets in the context of the air pollution problem.
We achieve up to 757.16 TFLOPS/s using 1024 nodes (75% of the
peak performance) using 490K geospatial locations on Shaheen-II
Cray XC40 system.
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1 INTRODUCTION
Gaussian geostatistical space-time modeling has emerged as an
essential complement to physics-based modeling of space-time
processes through, e.g., discretized partial differential equations,
because it is widely applicable and straightforward to use with suf-
ficient data. As observational data become more available, modelers
have turned to Gaussian geostatistics for its inference and predic-
tion capabilities. Gaussian geostatistical models embed correlations
arising from causality and are adequate for many phenomena. The
challenges to Gaussian geostatistical modeling are the cubic growth
of computational complexity and the quadratic increase of stor-
age complexity in the number of observations correlated through
the Gaussian log-likelihood evaluation process. This complexity is
linked to the Cholesky factorization operation required to compute
the inverse of the application-associated covariance matrix. Fitting
the models involves an iterative procedure requiring a cubic com-
plexity to evaluate the log-likelihood at each iteration. As shown
herein, these are addressable through multi-level parallelism using
asynchronous executions of computational tasks.

The grand challenge in large-scale Gaussian geostatistical mod-
eling lies in the inversion of Σ(θ ). The MLE operation involves an
iterative optimization process to evaluate the log-likelihood func-
tion in order to find the optimum set of parameters that obtains the
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global maximum likelihood value. We adopt a parallel implementa-
tion of the particle swarm optimization (PSO) algorithm [37], which
belongs to the family of evolutionary computing algorithms. The
PSO algorithm depends on the interaction between independent
particles to scan the search space of the problem to find the glob-
ally optimum solutions [40]. It has several advantages, including
its low computational cost and amenability to parallelization on
large-scale systems. The implementation in [37] incorporates the
pattern search method to the PSO algorithm to generate a more
aggressive version of the optimization process that allows more
accurate estimations of the required optimum solutions.

In this work, we use a two-level parallelization technique to
perform the MLE operation in space-time dimensions. The inner
level involves matrix operations of the log-likelihood function using
parallel task-based linear solvers. The outer level involves the par-
allel PSO (PPSO) algorithm to distribute the optimization process
between different numbers of nodes with the aid of the Message
Passing Interface (MPI) API. These techniques are tested on air
pollution datasets. The dangers of high levels of pollution, i.e., the
mixture of solid particles and liquid droplets suspended in the air
known as particulate matter (PM), have been revealed in a broad
range of studies. High concentrations of PM can cause cardiovas-
cular, respiratory, and Parkinson’s diseases and decrease life ex-
pectancy [15, 21, 22, 38]. PM also has devastating effects on the
environment, including disturbances in nutrient cycling [14], cloud
formation, solar radiation, the occurrence of acid rain, and accel-
eration of climate change [10]. Through its long-range transport
patterns, PM can travel to other locations and spread infectious
diseases [16]. Understanding and predicting the evolution of PM is
key to mitigating its effects.

The eight-fold contributions of the paper are as follows: 1) we
present a high-performance implementation of a flexible Gaussian
geostatistical space-time model on large-scale systems involving
the log-likelihood function; 2) we provide visualizations of the
space-time random fields generated by the high-performance im-
plementation; 3) we incorporate the PPSO algorithm to the MLE
operation to utilize the execution performance on distributed envi-
ronments; 4) we exploit the MPI communicators paradigm to create
a set of independent executions for the log-likelihood function
that allows parallel execution of the MLE operation while relying
on task-based parallel linear solvers to perform the log-likelihood
matrix operations; 5) we can achieve up to 757.16 TFLOPS/s us-
ing 1024 nodes on the Shaheen-II Cray XC40 system (75% of the
peak performance); 6) we show that using the PPSO algorithm,
all the parameters of the space-time model can be effectively esti-
mated; 7) we illustrate the benefits of using the newly implemented
space-time model over a simpler space-time model with fewer pa-
rameters via large scale space-time experiments; 8) we apply our
new implementation on two air pollution datasets from the Middle
East and US regions. The evaluation shows the advantage of the
proposed approach in satisfying high prediction accuracy in such
applications.

The remainder of the paper is structured as follows. Section 2
gives the general background on Gaussian geostatistical space-time
models and their associated covariance functions. We also recall
the PSO algorithm for parallel optimizations. Section 3 highlights
related works and positions our research contributions. Section 4

contains a detailed description of the proposed implementation on
distributed-memory systems. Section 5 reports the performance
results in terms of accuracy/time-to-solution, and we conclude in
Section 6.
2 BACKGROUND OF THE STUDY
In this section, we give an overview of Gaussian geostatistical space-
time models with their covariance functions and describe the PSO
algorithm and its parallel implementation.

2.1 Gaussian Space-Time Modeling/Prediction
Gaussian geostatistical space-time models offer a way to model
space-time data by considering them as realizations of a space-time
random field. Denote the measurement obtained at space-time loca-
tion (s, t) ∈ Rd × R,d ≥ 1, as Z (s, t), such that the elements in the
vector of measurements Z = {Z (s1, t1),Z (s2, t2), . . . ,Z (sn , tn )}⊤,
where n ∈ Z+ is the number of space-time locations, come from
the distribution of Z (s, t)with mean E {Z (s, t)} = µ(s, t) and covari-
ance cov {Z (s1, t1),Z (s2, t2)} = C(s1, s2; t1, t2 |θ ). Here µ(s, t) is the
mean function that models the deterministic part of the space-time
random field and C(s1, s2; t1, t2 |θ ) is a space-time covariance func-
tion, parameterized by θ ∈ Rq ,q ≥ 1, that describes the strength of
dependence of the measurements at any two space-time locations
(s1, t1) and (s2, t2). A space-time random field is second-order sta-
tionary in space and time when the covariance depends only on
the space-time lag (h,u). That is, suppose Z (s, t) is a second-order
stationary space-time random field. Then its covariance is given
by C(s1, s2; t1, t2 |θ ) = C(h,u |θ ), where h = s1 − s2 and u = t1 − t2.
The parametric space-time covariance function C can be chosen
among many established models in the Gaussian geostatistical lit-
erature [7, 13]. A typical workflow in Gaussian geostatistical space-
time modeling involves estimating the parameter vector θ given
space-time measurements Z. This is often done via the maximum
likelihood estimation (MLE). In MLE, the Gaussian log-likelihood
function

l(θ ) = −
n

2 log(2π ) − 1
2 log |Σ(θ )| − 1

2Z
⊤Σ(θ )−1Z, (1)

is maximized with respect to θ . Here Σ(θ ) = {C(si , sj ; ti , tj |θ )}ni, j=1
is the n × n covariance matrix of Z and |Σ(θ )| is the determinant
of Σ(θ ). The covariance matrix Σ(θ ) represents the dependence
between different pairs of locations based on the chosen space-time
covariance function.

Once the maximum likelihood estimates, denoted θ̂ , are obtained,
prediction, also known as kriging, can be done by recognizing that
the vector of known space-time measurements Z1 and the vector
of missing space-time measurements Z2 are jointly Gaussian, i.e.,[

Z1
Z2

]
∼ Nn1+n2

( [
µ1
µ2

]
,

[
Σ11(θ ) Σ12(θ )
Σ21(θ ) Σ22(θ )

] )
, (2)

where n1 and n2 are the number of given and missing space-time
locations, respectively, µ1 and µ2 are the mean vectors of Z1 and
Z2, respectively, Σ11 and Σ22 are the covariance matrices of Z1 and
Z2, respectively, and Σ12 = Σ⊤21 is the cross-covariance matrix of
Z1 and Z2. The conditional distribution of the missing space-time



Space-Time Modeling and Prediction for Air Pollution on Parallel Systems PASC ’22, June 27–29, 2022, Basel, Switzerland

Figure 1: Simulated space-time realizations from the model
in (6) with different values of the space-time interaction pa-
rameter, β . The nonseparable and separable models corre-
spond to β = 1 and β = 0, respectively.

measurements Z2 is:

Z2 |Z1 ∼ Nn2 {µ2 + Σ21(θ )Σ
−1
11 (θ )(Z1 − µ1),

Σ22(θ ) − Σ21(θ )Σ
−1
11 (θ )Σ12(θ )}. (3)

Under the zero-mean assumption, the best linear unbiased predictor
of Z2 is:

Ẑ2 = Σ21(θ̂ )Σ
−1
11 (θ̂ )Z1, (4)

with prediction uncertainty

V̂2 = diag{Σ22(θ̂ ) − Σ21(θ̂ )Σ
−1
11 (θ̂ )Σ12(θ̂ )}. (5)

2.2 Space-Time Covariance Matrix Functions
Research in developing geostatistical space-time covariance func-
tion models is intensive, given its crucial role in prediction and
uncertainty quantification. The space-time covariance function is
used to generate a positive definite covariance matrix whose pa-
rameters can be calibrated using the log-likelihood with a memory
complexity of O(n2) and computation complexity of O(n3), where
n represents the dimension of the covariance matrix. A popular
space-time covariance function proposed in [12] has the form:

C(h,u) =
σ 2

|u |2α /at + 1
Mν

{
∥h∥/as

(|u |2α /at + 1)β/2

}
, (6)

whereMν is the univariate Matérn correlation function with pa-
rameter vector θ = (σ 2,as ,ν ,at ,α , β)⊤ ∈ R6, such that σ 2 > 0 is
the variance parameter, ν > 0 and α ∈ (0, 1] are the smoothness
parameters in space and time, respectively, as ,at > 0 are the range
parameters in space and time, respectively, and β ∈ [0, 1] is the
space-time interaction parameter. When β = 0, the model is classi-
fied as a separable model such that it factors into its purely spatial
and purely temporal components, which implies independence of
the space and time aspects. Nonzero values of β imply that the
dependence structure in space relates to some degree with the de-
pendence structure in time. The resulting models when β > 0 are
termed nonseparable. In Figure 1, we show two simulated space-
time random fields springing from the nonseparable (β = 1) and
separable (β = 0) versions of the model in (6). The nonseparable
and separable models have the same parameter values except for

β . From the figure, one can see that the random fields are identi-
cal at t = 1, however, they evolve in different ways through time.
The model in (6) is considered flexible through supporting both
separable and non-separable space-time modeling.

2.3 Particle Swarm Optimization
The PSO algorithm belongs to the class of evolutionary computing
algorithms. Inspired by the functionality and structure of living enti-
ties from the same taxonomy, the evolutionary computing paradigm
has been successfully applied to many scientific fields. Although
single living entities have no perception of a high-level goal to
achieve, non-organized low-level goals achieved through different
entities lead to a global solution for a complex problem. There are
several examples of applying the evolutionary computing paradigm
to solve scientific challenges such as genetic algorithms [33], simu-
lated annealing [9], differential evolution [24, 28], and PSO [17, 27].
PSO is a heuristic global optimizationmethod that mimics biological
swarms’ social learning, for instance, a shoal of fish or flock of birds.
The search space includes a population of candidate solutions, i.e.,
a set of candidate parameter vectors. The PSO algorithm considers
every single solution as a particle that aims to move with a certain
speed to scan the global minimum solution’s search space. The par-
ticle is associated with a velocity vector that directs the next step of
the particle-based on the current position and the direction of the
best particle position. The PSO algorithm is conceptually simple
and compatible with parallelization. This makes PSO a prevalent
choice for scientific applications. However, some limitations should
be emphasized, such as local optima convergence and stagnation,
where swarms stagnate before reaching the global minimum and
remain highly diverse. Gaussian geostatistical space-time modeling
involves an optimization process to solve a nonconvex estimation
problem by maximizing the log-likelihood function. Herein, the
PSO algorithm is applied to solve the optimization process in par-
allel by relying on an existing parallel implementation of the PSO
algorithm, i.e., PPSO [37]. This implementation incorporates the
pattern search algorithm [19] into the PSO algorithm to generate a
more aggressive search method that can remove the limitations of
the original algorithm.

3 RELATEDWORK
Although space-time models are constantly being developed, re-
search on scaling these models to handle large volumes of space-
time data is lagging behind. Large-scale Gaussian geostatistical
modeling has been attempted in the past but mostly in the purely
spatial setting, i.e., not including the temporal dimension. In [1], a
unified exascale geospatial statistics software was proposed. The
software is supported with advanced linear algebra solvers and
dynamic runtime systems to enable high-performance spatial data
processing. The parallelization is performed in the MLE process in
the purely spatial context. Because of the added temporal dimension,
extending these to space-time is not trivial. A few existing space-
time implementations include [39] using OpenCL language with a
separable space-time covariance function. In [8], daily pollen levels
were reconstructed using the space-time inverse distance weighted
(ST-IDW) interpolation approach parallelized on a shared-memory
system, i.e., no interactions between nodes.
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Air pollution prediction has been performed in the literature
through various means. Often, aerodynamic analyses are employed,
wherein a computational model is initiated to model the pollution
concentrations. This process requires intensive computations and
an in-depth understanding of physical models. The Community
Multi-scale Air Quality (CMAQ) [30], the Nested Air Quality Pre-
diction Modeling System (NAQPMS) [11], and the WRFChem [32]
are some examples of these computational models. Although these
models are invaluable tools, they have several drawbacks. For in-
stance, they require defining many domain-specific parameters that
only domain scientists can obtain and understand. Statistical meth-
ods, which thrive in finding associations and correlations within the
dataset, have an advantage compared to the physics-based model-
ing approaches because practitioners need not first become experts
about the process being modeled [18]. Several statistical tools have
been used in literature to perform weather prediction with high
accuracy [2, 31, 35]. Several works in literature use statistical meth-
ods to perform predictions on the air pollution problem [20, 23, 26].
This work provides a framework upon which Gaussian geosta-
tistical space-time models can perform large-scale air pollution
predictions. In this work, we aim at providing a high-performance
implementation of the space-time model in (6). To our knowledge,
this is the first high-performance implementation of this model on
distributed-memory systems.

4 PARALLEL MODELING FRAMEWORK
This section provides a detailed description of the proposed parallel
framework through a two-level parallelization technique. At the
inner level, a dynamic runtime system orchestrates tasks from the
parallel linear solvers required during the MLE operation. At the
outer level, the PPSO algorithm is used to distribute the optimization
process between a set of MPI sub-communicators.

4.1 Parallel Likelihood Function Estimation
High-performance geostatistics modeling software has been pro-
posed in [1] with threemain components: a synthetic data generator,
an MLE modeling tool, and a predictor. This software mainly relies
on Chameleon state-of-the-art linear algebra library [6] and StarPU
dynamic runtime system [5]. Through a set of task-based linear
solvers, high-level geostatistical operations were implemented,
mainly synthetic spatial data generation, log-likelihood maximiza-
tion, and spatial prediction functions. The underlying linear solvers
are supported by tile-based algorithms, where the covariancematrix
is split into a set of small tiles and operate directly on these tiles [3].
Compared to the block-based algorithms, which were widely used
in parallel linear algebra software, tile-based algorithms enable a
fine-grained look-ahead mechanism to the trailing submatrix and
relaxes artifactual loop-ordered and subroutine boundary synchro-
nization points encountered.

Task-based linear solvers rely on dependence analyses derived
directly from the serial code and represented in Directed Acyclic
Graphs (DAGs). Each DAG defines the tasks through nodes and
the data dependencies through arrows. An example of a 4 × 4 ma-
trix Cholesky factorization DAG is shown in Figure 2 with four
tile-based operations: POTRF, TRSM, SYRK, and GEMM. DAGs

Figure 2: Cholesky factorization 4 × 4 DAG with four op-
erations: positive-definite triangular Cholesky factorization
(POTRF), triangular solve matrix (TRSM), symmetric rank-
K update (SYRK), and matrix-matrix multiply (GEMM).

can be sequentially coded and passed to the dynamic runtime sys-
tem to enable fine-grain execution on the underlying hardware
architecture. In [1], StarPU dynamic runtime system [4] is used to
support the tile-based linear solvers on broad hardware architec-
tures (shared-memory, GPUs, and distributed-memory systems).
StarPU can directly manage sequential coded DAGs to schedule
tasks to the available hardware resources. The StarPU internal
scheduler ensures the utilization of the resources and the tasks’
ordering to prevent possible access violations. StarPU provides a
high level of abstraction to improve user productivity and creativity.
In the proposed implementation, we adopt task-based parallelism in
the MLE operation through the Chameleon parallel linear algebra
library and StarPU runtime system.

4.2 Proposed Parallel Optimization Strategy
The MPI API is the predominant programming method in devel-
oping HPC applications on large-scale systems [25]. It relies on
exchanging data between distributed-memory processing units
through message passing. Distributed applications usually require
collective operations that involve a group of processes communicat-
ing in an isolated context through what is called the MPI commu-
nicator. The MPI default communicator isMPI_COMM_WORLD,
which involves all the initiated MPI processes defined by the user.
This default communicator can be split into x sub-communicators
where processes in each sub-communicator (xi ) can exchange data
through the collective operations associated with this MPI sub-
communicator. TheMPI_Comm_split MPI function is a common
way to partition the default communicator into disjoint subgroups
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(a) Iteration 0 (b) Iteration N

Figure 3: PPSO-based MLE optimization of a univariate
purely spatial covariance function.

associated with different sub-communicators. Each group of pro-
cesses has one value of color so that each sub-communicator con-
tains all processes of the same color. In this work, we exploit the
MPI communicator/sub-communicators to perform a high-level
parallelization, optimize the MLE process, and effectively utilize
the underlying hardware resources.

Although the state-of-the-art parallel linear algebra solvers pro-
vide a high level of parallelization and scalability on large systems,
enough workload should be guaranteed for all processing units,
which cannot be satisfied because of the memory limits. Thus,
we pick the required number of nodes based on the problem size.
This should satisfy the higher performance requirement and avoid
memory size restrictions. Further scalability can be achieved by
parallelizing the optimization process on a larger number of nodes.

In the log-likelihood function, θ̂ = (θ̂1, ..., θ̂q )⊤ represents the
parameter vector of the maximum likelihood estimates which max-
imizes the log-likelihood function. Finding the maximum value of
the log-likelihood function requires several optimization iterations
over a pool of parameter vectors. In the proposed framework, we
rely on the PPSwarm software, a parallel implementation of the
PPSO algorithm mentioned in Section 2.3 [37]. The parallel imple-
mentation utilizes several particles to scan the search space simulta-
neously, such that each particle can find the maximum value of the
log-likelihood function using a single parameter vector on one MPI
node. Thus, a single MPI communicator is used to organize the com-
munication between different nodes, i.e., MPI_COMM_WORLD.
We incorporate the PPSO algorithm with the runtime-based MLE
implementation. Assuming several MPI nodes under the default
MPI communicator, we split the default communicator into a set
of sub-communicators where each can be used to evaluate a sin-
gle log-likelihood function solution. In this way, we can evaluate
several log-likelihood functions in parallel while keeping the MLE
operation’s low-level parallelization. Figure 3 shows how different
particles move from iteration 0 to iteration N to find the optimum
point in the search space. Each particle exclusively evaluates one
log-likelihood function.

Figure 4 depicts the two-level node splitting operation. Assuming
a set of 32 MPI nodes is used, the MPI_Comm_split function can
be used to split the defaultMPI_COMM_WORLD communicator
into a set of sub-communicators, as shown by the figure. Each sub-
communicator includes the nodes that will internally communicate

18

14
15

16

17

12

11

10

9

6

4

7

8

5

3

2

1

28

30

29

31

32

27

25

26

24

22

21

20

19

13

23

comm0 comm1 comm2 comm3 comm4 comm5 comm6 comm7

1 3 42

Cholesky Factorization 
DAG (4 x 4 matrix)

32313029

Cholesky Factorization 
DAG (4 x 4 matrix)

Figure 4: Testcase using 32 nodes and 8 MPI sub-
communicators. Each sub-communicator includes 4 nodes
that estimate the log-likelihood function with a certain set
of parameters in parallel using the StarPU runtime system.

to evaluate a single MLE solution with the aid of the underlying
parallel linear algebra library and the dynamic runtime system.

5 PERFORMANCE RESULTS AND ANALYSIS
In this section, the performance of the proposed two-level par-
allelization technique are assessed using both synthetic and real
space-time datasets. We generated synthetic datasets with different
spatial and temporal dependence profiles that illustrate various
cases that can appear in real data. We also obtained two real PM
datasets, each with more than 400K space-time locations to demon-
strate and validate the prediction accuracy of our implementation.
The performance is tested on an Intel-based Cray XC40 system with
6,174 compute nodes, each of which has two 16-core Intel Haswell
CPUs at 2.30 GHz and 128 GB of memory. All the experiments were
conducted on the whole number of cores with different nodes. We
rely on the StarPU runtime system to manage the parallelization at
the inner level, where sequential tasks are scheduled dynamically to
the available processing units. Inside the node, StarPU uses POSIX
Threads (pthreads) to run the tasks on different cores (one thread
per core). In addition, StarPU relies on MPI at the node level to
enable communication between all processes running on different
nodes. We found that using one MPI process per node achieves
the best performance on our target system than having more MPI
processes per node.

5.1 Qualitative Analysis Using Synthetic Data
In this section, we illustrate the merits of our proposed framework
on two fronts. First, we showcase the advantage of using nonsepa-
rable over separable models. Second, we test the accuracy of our
implementation in recovering the parameters of the nonseparable
model (see Eq (6)).

Separable and nonseparable models can both be applied to model
the dependence structure of any space-time dataset. In practice,
the separable model has been the go-to model of geospatial statisti-
cians for modeling almost any kind of space-time data, separable
or nonseparable, since it is easier to fit with fewer parameters and
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less computation time than the nonseparable model. However, this
simpler model ignores any interaction between space dependence
and time dependence, which may be vital for improved prediction
accuracy. The nonseparable model addresses this problem by accom-
modating significant space-time dynamics through the space-time
interaction parameter, β . To illustrate the strength of the nonsepa-
rable model, we perform some numerical experiments. We simulate
space-time realizations at 400 spatial locations × 100 temporal lo-
cations from the model in (6) for each values of β ∈ {0.1, 0.5, 1}.
These datasets are representative of space-time interactions, from
weak to strong. To each simulated dataset, we fit both a separable
(β = 0) and a nonseparable model (β ≥ 0) on the training set (90%)
using local optimization and perform predictions on the testing
set (10%). We perform this simulation, estimation, and prediction
for 100 rounds and plot the resulting prediction errors, computed
using the mean squared prediction error (MSPE) metric, as boxplots
for each scenario. Figure 5 shows the results of the experiments.
From the results, one can see that both separable and nonseparable
models are at par in prediction performance when the interaction
in space-time is weak, i.e., β = 0.1. The difference between the two
models appears when tested in moderate and strong interaction
scenarios. As expected, the separable model cannot adequately cap-
ture non-negligible space-time interaction. Since a nonseparable
model is preferable due to its flexibility in supporting both sepa-
rable and nonseparable modeling, we check whether the parallel
implementation can recover all the parameters of such a model. In
this set of experiments, we simulate realizations from the nonsepa-
rable model in (6) with varying degrees of space-time dependence.
We generate space-time random fields from combinations of weak,
moderate, and strong dependence in space and time using different
values of as and at , the parameters responsible for the long-range
dependence in space-time, respectively. Figure 6 presents the val-
ues of the parameter estimates for every dependence scenario. The
median values of the parameter estimates match the true parameter
values. This shows that the PPSO can satisfactorily perform in any
combination of space-time dependence. The boxplots being wider
in scenarios with strong dependence in either space and/or time
may be due to having fewer data points with separation distance
in space and/or time that are larger than the spatial or temporal
effective ranges, which are the distances at which the spatial or
temporal correlation drops to approximately 0.05.

5.2 Qualitative Analysis Using Real PM2.5 Data
In this section, we apply the proposed framework to real space-
time datasets downloaded from the NASA Earthdata website. The
datasets are Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2) reanalysis datasets comprised
of hourly PM2.5 measurements. PM2.5 are particulate matters (PMs)
with an aerodynamic diameter of 2.5µm or less [36]. The first dataset
includes the residuals of the log PM2.5 averaged over 48 hours in
Saudi Arabia from 2016 to 2019. Such data transformation ensures
that the measurements satisfy the zero-mean, Gaussianity, and sta-
tionarity in the space-time second-order structure assumptions; see
Section 1, where these assumptions were laid out. The dataset con-
tains 550 spatial locations, each with 730 temporal measurements.
The resulting space-time covariance matrix for this dataset is of
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size 401, 500 × 401, 500. Figure 7 shows the measurements at every
spatial location at the first six-time points. We expect some sub-
stantial correlation in space from the data as there are recognizable
blobs of yellow, red, and blue, indicating that the measurement at
any spatial location is similar to its neighbors. We may expect a
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Table 1: A summary of the estimated parameters of the nonseparable (NS) and separable (S) models and their corresponding
errors (MSPE) and prediction uncertainty (PU) for the Saudi Arabia and US datasets. MSPE1 and PU1 correspond to Testing
Dataset 1, while MSPE2 and PU2 point to Testing Dataset 2. The best model reports the lower MSPE and PU.

Model σ̂ 2 âs ν̂ ât α̂ β̂ MSPE1 / PU1 MSPE2 / PU2

Saudi Arabia NS 1.2942 1.3461 2.1568 1.1284 0.1401 0.7548 0.00179877 / 76.91 1.08391 / 875.85
S 2.6194 1.2737 2.1544 2.0466 0.0308 0 0.00180 / 78.63 1.14705 / 1066.00

US NS 0.4757 1.3383 1.1266 6.7722 0.7262 0.1451 0.00280/ 155.27 0.05822 / 322.09
S 2.1237 1.5409 1.4709 7.9975 0.4867 0 0.00318 / 134.52 0.06386 / 1118.20

Figure 7: Visualization of the log PM2.5 dataset after space-
time mean removal at the first six time points in 2016 over
Saudi Arabia.

weak correlation in time as the spatial images are substantially dif-
ferent from one-time point to the next. The second dataset contains
the residuals of the hourly log PM2.5 in the Midwest US, where
the terrains are relatively flat. Over this certain region, the hourly
sampled log PM2.5 already satisfies the stationarity assumption,
hence, no averaging is performed. This other dataset contains 945
spatial locations, each with 500 temporal measurements, with a
resulting space-time covariance matrix of size 472, 500 × 472, 500.
Figure 8 shows the measurements of the second dataset at every
spatial location at four-hour intervals. Similarly, moderate to strong
correlation in space can be seen. However, unlike the first dataset,
a strong correlation in time can be hypothesized as the spatial im-
age structure from the first hour tends to persist even until after
20 hours. Furthermore, Figure 8 illustrates a unique phenomenon
called the transport phenomenon, where objects such as PM2.5
particles get transported from one place to another by some media
such as the wind. Such behavior can be detected by following the
red blob at 0:00 located over Colorado and Nebraska. At 20:00, the
red blob has traveled to Oklahoma. This transport phenomenon
and many other environmental phenomena are more appropriately
modeled by nonseparable space-time models [12, 34].

Figure 8: Visualization of the log PM2.5 dataset after space-
timemean removal at four hour intervals on January 1, 2016
over the Midwest US.

To validate our method, we prepare two datasets for estimation
and testing. Testing Dataset 1 comprises of measurements at ran-
domly selected space-time locations within t = 1 to t = 730 for
Saudi Arabia and within t = 1 to t = 500 for the US. On the other
hand, Testing Dataset 2 comprises of measurements at all spatial
locations two-time steps in the future, i.e., at t = 731 and t = 732 for
Saudi Arabia and at t = 501 and t = 502 for the US. We obtain the
estimated parameters, and predict the measurements (Equation 4)
and compute the prediction errors measured by the MSPE and the
associated prediction uncertainty (PU) (Equation 5). The results
are reported in Table 1. The parameter estimates in Table 1 imply
several properties regarding the two space-time random fields. First,
the nonseparability parameter, β , for Saudi Arabia has an estimated
value of 0.7548. This is higher than the estimated β value of 0.1451
for the US. Therefore, the space-time interaction for log PM2.5 is
much stronger in Saudi Arabia than in the US. Second, the range
parameter in time, at , has an estimated value that is higher in the
US than that in Saudi Arabia. This suggests that log PM2.5 values
at time points that are far apart remain strongly correlated. Based
on the parameter values, for the Saudi Arabia case, the correlation
drops to 0.05 after 8-time points, while the correlation drops to
0.05 after 150-time points for the US one. Third, some parameters
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Figure 9: Boxplots of the prediction errors for the separable (S) and
nonseparable (NS) models in the real data pseudo cross-validation
study.

in the separable model differ a lot from their counterparts in the
nonseparable model. This can be expected as the parameters in the
separable model need to compensate for the lack of the β parameter.
In particular, the variance parameter, σ 2, is artificially inflated and
is the most impacted parameter. Moreover, when we compute the
sample variances of the training dataset for Saudi Arabia and the US,
we obtain the values 0.9979 and 0.8050, respectively. The variance
parameter estimates under the nonseparable model are closer to
these values obtained from the real data. This is one disadvantage of
the separable model, i.e., we obtain erroneous parameter estimates
that are not supported by the real data. Fourth, the errors obtained
in Testing Dataset 1 are smaller than those obtained in Testing
Dataset 2. This is expected as predicting on Testing Dataset 1 in-
volves filling the missing values at some locations in space for each
time point. On the other hand, predicting on Testing Dataset 2
entails forecasting forward in time where all values on the map are
missing for several time points ahead. Prediction on datasets such
as Testing Dataset 2 is much more common in practice, wherein
full maps of measurements in the following few time points are
desired. Lastly, the separable model returns higher prediction er-
rors than the nonseparable model. In particular, the percentages
of improvements of the nonseparable over the separable model for
MSPE in Testing Dataset 2 is 6% in Saudi Arabia and 9% in the US,
and the prediction uncertainty (PU) is 18% in Saudi Arabia and 71%
in the US.

The difference inMSPEs between the nonseparable and separable
models may not be huge because the values are small. Hence, to
further show that the nonseparable model is superior, we perform a
pseudo cross-validation [29] study wherein for 100 rounds, we take
a subset of each of the testing datasets and compute the resulting
MSPE. We collect the MSPE values and illustrate the distribution
as boxplots in Figure 9. The boxplots have shown that indeed the
nonseparable model returns lower errors in both weak correlation
(Saudi Arabia) and strong correlation (US) scenarios. These real data
results mirror the synthetic data experiments results in Figure 5.

5.3 Performance Evaluation
We aim in this section to evaluate the performance of the proposed
two-level parallel implementation. Parallelization of the MLE opera-
tion through a set of MPI sub-communicators requires determining
the number of nodes in each MPI sub-communicator that satisfies a
decent performance (execution time and FLOPS/s). Assuming a sin-
gleMPI process per node, the workload is distributed to run through

(a) 128 nodes.

(b) 256 nodes.

(c) 512 nodes.

(d) 1024 nodes.

Figure 10: Performance of a single MLE optimization step
using a different number of nodes on Shaheen-II Cray
XC40 Supercomputer. The legends show howmanyMPI sub-
communicators x are used and how many y nodes exist in
each MPI sub-communicator.
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a set of MPI sub-communicators. Each MPI sub-communicator has
some nodes less than or equal to the total number of target nodes.
We use x × y notation to define a specific workload distribution
where x represents the number of MPI sub-communicators and y
represents the number of nodes in each sub-communicator. Herein,
we evaluate these combinations for a set of given nodes, i.e., 32,
64, 128, 256, 512, and 1024 on KAUST Shaheen-II Cray XC40 sys-
tem. We assume a load-balanced workload distribution since all
computations are densely performed (full-double precision).

Figure 10 shows the performance of different combinations, i.e.,
x×y nodes using different matrix sizes. The missing data come with
the memory limitation of using a small number of nodes per MPI
sub-communicator. For the different number of nodes, the same
remarks hold. First, fewer nodes per MPI sub-communicator (i.e.,
distributing the workload through more MPI sub-communicators)
is the main option to achieve decent performance. Of course, this is
restricted by the size of the problem. The best performance can be
obtained by the smallest number of nodes per sub-communicator
that can handle a given problem size. Second, the performance
improvement can be clearly observed in all the subfigures with
small matrix sizes and a small number of nodes compared to a large
number of nodes per sub-communicators since the workload is
small and cannot saturate a large number of nodes. For instance,
in Figure 10a, using 128 nodes, the performance improvement of
using eight MPI sub-communicators compared to the single com-
municator with all the 128 nodes is about 6.38X with a problem
size of 40K. However, in the case of 160K, only 2.12X performance
improvement has been achieved. Another example can be captured
from Figure 10c, using 512 nodes, the achieved performance im-
provements are 27.89X and 11.58X with 40K and 160K problem
sizes, respectively. Third, the proposed framework shows higher
performance improvements with more nodes. For instance, using
160K problem size, the achieved performance improvements are
2.12X, 4.08X, 11.58X, and 23.39X using 128, 256, 512, and 1024
nodes, respectively. We summarize the performance gain of apply-
ing the two-level parallel MLE implementation compared to the
one-level parallel implementation in Figures 11a and 11b. We use
both performance (FLOPS/s) and time-to-solution for the compari-
son. In the two-level parallel MLE implementation, the number of
MPI sub-communicators has been tuned for each number of nodes
and problem size to achieve the highest performance.

In Figure 11, the x- and y-axes show the number of nodes and
the performance (TFLOPS/s) in log-scale. Six different matrix sizes
are used for the evaluation, i.e., 40K, 90K, 160K, 250K, 360K, and
490K. Figure 11a reports the one-level implementation performance
where only the parallel linear solvers are applied to the log-likelihood
function. The empty red box shows the peak performance (Rpeak)
that a certain number of nodes can theoretically achieve.

With smaller workloads, the performance degrades with a larger
number of nodes when there is not enough work to keep all the
nodes busy. The missing data come with the lack of saturating the
target number of nodes). Moreover, compared to the peak perfor-
mance of each number of nodes (in the red curve), the one-level
parallelization can achieve up to 67%, 59%, 60%, 56%, 47%, and 28%
of Rpeak using 32, 64, 128, 256, 512, and 1024, respectively.

Figure 11b shows performance using the two-level parallel im-
plementation. The figure confirms the scalability of the proposed
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(b) Two-level parallelization.

Figure 11: Performance of one MLE optimization step using
single and n MPI communicators on Shaheen-II Cray XC40
Supercomputers. In (b) x MPI sub-communicators is used
where x is tuned for performance.

implementation with the different number of nodes. We report the
best performance of different numbers nodes and problem sizes
with a tuned x value, i.e., the number of sub-communicators. The
achieved performance compared to the peak performance can reach
up to 65%, 66%, 66%, 60%, 59%, and 58% using 32, 64, 128, 256, 512,
and 1024, respectively. Compared to Figure 11a, the proposed im-
plementation satisfies stable performance with a different number
of nodes and with different problem sizes.

Figure 12 highlights the gained performance in using the pro-
posed two-level parallelization compared to the one-level paral-
lelization using 1024 nodes on Shaheen-II Cray XC40 system. The
figure shows that the proposed framework can achieve 3.3X more
TFLOPS/s than the baseline framework using a 490Kdataset. Smaller
matrix sizes can achieve higher performance increases, but we think
it might be overkill to highlight this speedup since the scalability of
the one-level parallelization degraded so much with small problem
size and a large number of nodes. Of course, performance analy-
sis addresses processing capability; however, time-to-solution is
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Figure 12: One-level versus two-level MLE parallelization
performance using 1024 nodes on Shaheen-II CrayXC40 sys-
tem.

also essential to assess the effectiveness of the proposed method.
Figure 13 shows the time-to-solution, where the number of opti-
mization iterations is fixed to 100. When one-level parallelism is
used (Figure 13a), smaller workloads take the same execution time
even when the number of nodes is increased. Thus, at a certain
point, increasing the number of nodes will not improve the time-
to-solution anymore. For instance, with a 360K problem size, using
1024 nodes instead of 512 nodes will not accelerate the execution
time. On the contrary, the proposed implementation keeps the exe-
cution time speedup gains with more nodes. For instance, with a
360K problem size, the total execution time of the MLE operation is
4343.42 and 2311.48 seconds with 256 and 512 nodes, respectively,
with a 1.87X speedup. Figure 13 also summarizes the achieved
speedup by the one-level and the two-level parallel implementa-
tions when doubling the number of nodes. As shown, the proposed
two-level parallel implementation always achieves speedup close to
theoretical speedup, i.e.,N nodes can achieve 2X speedup compared
to N /2 nodes.

6 CONCLUSION
We proposed a parallel implementation of geostatistical space-time
modeling that can predict air pollution using observations in a
specific space-time domain, illustrating the importance of relaxing
the assumption of independence of space and time. The proposed
two-level framework relies on MPI sub-communicators at the upper
level to perform independent log-likelihood function evaluation
with different sets of parameters. These independent computations
result from applying parallel optimization through the PPSO al-
gorithm, where each swarm performs a single log-likelihood esti-
mation. A task-based parallel technique is used at the inner level
to perform linear solver operations on a given set of nodes repre-
senting a single MPI sub-communicator. StarPU runtime system
have been used to schedule the tasks to target processing units. The
performance of the proposed implementation has been assessed
using synthetic and real datasets from two different geographical
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(b) Two-level parallelization.

Figure 13: Time-to-solution of full MLE operation using 100
optimization iterations on Shaheen-II Cray XC40 system. In
(b), we tune x MPI sub-communicators for performance.
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regions and the importance of using a space-time model that incor-
porates the interaction between the spatial and temporal domains
was demonstrated. We achieved high prediction accuracy on pol-
lution data with 490,000 locations with up to 757 TFLOPS/s using
1024 nodes on the KAUST Shaheen-II Cray XC40 system (around
63% of the theoretical peak). Future work would involve applying
tile low-rank and mixed-precision approximations to accelerate
further the modeling process.
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