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A B S T R A C T
Critical infrastructure networks—including transportation, power grids, and communication sys-
tems—exhibit complex interdependencies that can lead to cascading failures with catastrophic
consequences. These cascaded disasters often originate from failures at critical points in the
network, where single-node disruptions can propagate rapidly due to structural dependencies
and high-impact linkages. Such vulnerabilities are exacerbated in systems that have been highly
optimized for efficiency or have self-organized into fragile configurations over time. The air
transportation system in the United States, built on a hub-and-spoke model, exemplifies this type
of critical infrastructure. Its reliance on a limited number of high-throughput hubs means that
even localized disruptions—particularly those triggered by increasingly frequent and extreme
weather events—can initiate cascades with nationwide impacts. We introduce a novel application
of the theory of Self-Organized Criticality (SOC) to model and analyze cascading failures in
such networks. Through a detailed case study of U.S. airline operations, we show how the
SOC model captures the power-law distribution of disruptions and the long-tail risk of systemic
failures, reflecting the real-world interplay between structural fragility and external climate
shocks. Our approach enables quantitative assessment of network vulnerability, identification of
critical nodes, and evaluation of proactive intervention strategies for disaster risk reduction. The
results demonstrate that the SOC model successfully replicate the observed statistical patterns
of disruption sizes—characterized by frequent small events and rare but severe cascading
failures—offering a powerful systems-level framework for infrastructure resilience planning
and emergency management. The model provides practitioners with actionable insights for
anticipating and mitigating systemic risks in complex, interdependent systems.

1. Introduction
The catastrophic failures that have increasingly plagued modern air transportation networks reveal a fundamental

vulnerability in our interconnected world. When Southwest Airlines canceled over 16,000 flights during the December
2022 winter storm [1], when the Federal Aviation Administration’s (FAA) Notice to Airmen (NOTAM) system failure
grounded all domestic flights in January 2023 [18], and when Hurricane Ian’s impact cascaded through the entire
national aviation network despite affecting only a handful of airports [60], they exposed a troubling reality: the air
transportation infrastructure has evolved into a system poised on the edge of chaos [47, 19].

The hub-and-spoke architecture that defines modern aviation, while remarkably efficient under normal conditions,
has produced a network structure exhibiting hallmarks of self-organized criticality (SOC)—a regime where small
perturbations can trigger avalanche-like cascading failures [7]. This architecture concentrates the vast majority of
air traffic through a limited number of high-throughput hubs such as ATL (Atlanta), ORD (Chicago O’Hare), DFW
(Dallas–Fort Worth), and DEN (Denver). Each of these hubs processes thousands of connecting flights daily, creating
a tightly coupled system in which the failure of a single hub can rapidly propagate disruptions across the entire network
with devastating efficiency.

Our empirical analysis of comprehensive flight operations data from the Bureau of Transportation Statistics [13]
shows that the U.S. air traffic network operates in an SOC state. Figure 1 demonstrates that airport disruptions follow a
power-law distribution—a signature of SOC systems—where small disruptions occur frequently while large systemic
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Figure 1: Power-law distribution of airport disruptions in the U.S. air traffic network, exhibiting characteristics of self-
organized criticality (SOC). The log-log plot shows a power-law exponent of 𝛼 = 2.4 with a high goodness-of-fit
(𝑅2 = 0.949), indicating that while small disruptions are common, large system-wide failures are rare but statistically
expected—consistent with the heavy-tailed behavior typical of SOC systems.

failures, though rare, emerge as inevitable consequences of the network’s structure. This behavior persists across
decades of data, as Figure 2 illustrates by documenting cascading disasters from 1987 to 2025.

The evolution toward criticality reflects the convergence of two reinforcing trends: the relentless optimization of
air traffic for business efficiency and the climate-driven intensification of extreme weather. These complementary
forces have created a perfect storm of systemic vulnerability—efficiency optimization has eliminated redundancy and
resilience buffers precisely as weather shocks have become more frequent and severe. The four panels of Figure 2
illustrate this transformation: (a) airport network expansion followed by saturation and crisis-driven contraction, (b)
disruption patterns exhibiting SOC behavior, (c) operations nearing fundamental capacity limits, and (d) cancellation
severity surpassing historical norms. Together, these trends have positioned the aviation system at the edge of chaos—a
pattern echoed in power grid failure analysis [54]—and suggest that cascading failures are now structural features rather
than preventable anomalies.

This empirical evidence of SOC behavior in aviation networks reflects a broader pattern of systemic vulnerability
emerging across complex systems. Cascading disasters—where initial disruptions propagate through interdependent
networks—have drawn increasing attention for their disproportionate and unexpected impacts. In contrast to compound
events involving multiple independent hazards, cascading failures originate in tightly coupled, efficiency-optimized
systems, where local perturbations rapidly escalate across sectors [5, 48, 49]. This systems perspective has been applied
to multi-hazard interactions, which reveal latent vulnerabilities often overlooked in single-event analyses. [26, 21, 22,
38, 36, 50]. These dynamics are further amplified by institutional fragilities and coordination gaps [49, 20, 34, 40].

Climate change intensifies these risks by increasing the frequency and severity of extreme events, while aging
infrastructure, brittle supply chains, and algorithmic complexity push systems closer to failure [29, 43, 61, 30].
Compound extremes—such as wildfire–heatwave–drought linkages—have highlighted the inadequacy of scenario-
based planning and underscored the need for systemic models that can capture emergent, network-wide failure
patterns [58, 4, 3, 8, 33, 56]. Yet dominant modeling frameworks remain static and rule-based, lacking the capacity to
simulate the nonlinear, evolving dynamics that unfold across space and time [27, 45, 59, 15, 28, 23, 44].

In contrast, SOC dynamics are emergent: large-scale failures can arise not from a single extreme event but from
the gradual accumulation and redistribution of stress across interconnected components. For example, a bridge may
appear structurally sound under normal traffic but collapse after repeated minor stresses exceed a threshold. Because
tipping points depend on evolving system states—not just observable shocks—models based solely on past events
may overlook future vulnerabilities. This limitation is especially acute in dense, interconnected environments, where
complexity and fragility grow in tandem [12, 39, 37, 35, 42, 52].

This paper addresses these challenges by introducing a novel application of SOC theory to model cascading failures
as emergent outcomes of complex system dynamics. Rather than viewing large-scale disruptions as isolated anomalies,
SOC frames them as inevitable outcomes of stress accumulation and structural fragility—offering a generative,
systems-level framework for anticipating, diagnosing, and mitigating cascading failures in critical infrastructure
networks. The rest of the paper is organized as follows: Section 2 reviews the theoretical foundations of SOC and its
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(a) Number of active airports (b) Percentage of airports disrupted

(c) Total daily flight departures (d) Total daily flight cancellations
Figure 2: Evolution of the U.S. aviation system from 1987 to 2025 across four key operational metrics. Vertical dotted
lines denote major crisis events: 9/11 (2001), the Financial Crisis (2008), and COVID-19 (2020). (a) The number of active
airports grows steadily before plateauing, then becomes increasingly sensitive to external shocks. (b) The proportion of
airports experiencing disruptions rises over time, reflecting the growing frequency and severity of system-wide failures. (c)
Daily flight departures illustrate the expansion of network complexity and traffic volume. (d) Flight cancellations show a
rising trend in disruption severity, consistent with the system’s progression toward criticality—where small perturbations
can trigger cascading failures.

application to complex networks. Section 3 presents the SOC model for the U.S. air traffic network. Section 4 reports
simulation experiments demonstrating how structural and operational factors shape cascading behavior. Section 5
outlines the potential of SOC modeling for early warning systems. Section 6 applies SOC to climate stress-testing
scenarios. Section 7 concludes the paper and identifies future research directions for critical infrastructure resilience.

2. Theoretical Foundations of Self-Organized Criticality
SOC represents a major theoretical breakthrough in complex systems science, offering a unified framework for

understanding how large-scale catastrophic events can emerge naturally from the intrinsic dynamics of interconnected
systems. Unlike traditional approaches that treat major disruptions as exogenous shocks or rare anomalies, SOC
theory reveals that catastrophic failures are often structural features of systems operating near critical thresholds. This
perspective shifts the focus of infrastructure resilience from preventing isolated failures to managing the dynamics of
criticality itself—particularly in systems optimized for efficiency and operating under constant stress.
2.1. The Revolutionary Insight: Systems on the Edge of Chaos

The theoretical foundation of SOC emerged from the seminal work of Bak et al. [7], who showed that complex
systems can spontaneously evolve toward critical states without external tuning. The canonical sandpile model
illustrates this: grains of sand accumulate until a critical slope is reached, after which a single grain can trigger
avalanches of all sizes, governed by a balance between slow buildup and fast relaxation. SOC systems exhibit three
defining characteristics: scale invariance, where statistical patterns persist across scales; universality, where outcomes
are independent of micro-level details; and long-range correlations, where local perturbations can affect distant parts
of the system. These features produce power-law distributions of event sizes, offering a theoretical basis for why
catastrophic failures occur with statistical regularity across domains such as evolution [2], solar flares [6], earthquakes
[9, 16, 57], landslides [31], financial markets [10, 11], economic cycles [55], neural dynamics [32, 51], psychological
phenomena [53], ecosystems [41], wildfires [25], and power grids [14, 24].
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2.2. The Mathematics of Criticality: Power-Law Distribution
The mathematical foundation of SOC is its scale-invariant behavior, expressed through a power-law distribution:

𝑃 (𝑠) ∼ 𝑠−𝛼 , where 𝑠 is the event size and 𝛼 is the critical exponent. This distribution implies the absence of a typical
event size—unlike normal distributions centered on averages, power laws exhibit heavy tails, where extreme events are
far more probable than intuition suggests. The value of 𝛼 governs the system’s risk profile: smaller exponents increase
the likelihood of large cascades, while larger exponents favor smaller, more frequent events. Because correlations
persist across all scales, disruptions can spread broadly in space and time, explaining the heightened sensitivity of air
traffic networks as they approach capacity-driven operating limits.
2.3. SOC in Complex Systems: Universal Critical Behavior

SOC theory provides a powerful explanation for cascading failures across complex systems. Power grids, internet
networks, and financial markets have all been shown to exhibit power-law-distributed failures and nonlinear propagation
dynamics. The 2003 Northeast blackout exemplifies this behavior: a line failure in Ohio cascaded across regional
networks, ultimately affecting over 50 million people and resulting in an estimated $10 billion in damages [17, 46].
More recently, Salvaña and Tangonan [54] demonstrated that monitoring changes in the critical exponent 𝛼 could
forecast the 2021 Texas power crisis 6–12 months in advance, with supercriticality behavior (𝛼 < 1) serving as an
early warning indicator.

Building on this foundation, we present a novel framework that models critical infrastructures as SOC systems. This
marks a paradigm shift from conventional risk assessments—focused on isolated failure modes—toward a systems-
level view where criticality is an emergent property of the system itself. The SOC approach enables quantitative
assessment of systemic vulnerability, identification of structurally fragile nodes, and evaluation of intervention
strategies. Air traffic networks exemplify these dynamics: hub-and-spoke architectures concentrate stress at central
nodes, making them natural cascade triggers. SOC theory suggests that catastrophic failures are not isolated anomalies
but statistically expected outcomes driven by network topology, load conditions, and proximity to criticality—rather
than by specific initiating events.

3. The Self-Organized Criticality Model of the U.S. Air Traffic Network
Our modeling framework formalizes the principle that any SOC system must incorporate five core elements that

collectively determine the system’s critical behavior and the statistical properties of cascading failures:
1. Network Configuration: Defines the pathways through which failures propagate, forming the topological

substrate on which critical phenomena emerge. Figure 3 depicts the hierarchical hub-and-spoke structure of
U.S. aviation. Examples include:

• Scale-free networks with hub-and-spoke architecture, where traffic concentrates at major hubs like ATL
• Small-world networks, such as power grids, with local clustering and long-range connections
• Regular lattice structures modeling wildfire spread through nearest-neighbor interactions
• Modular networks representing urban infrastructure systems—such as water, transportation, and commu-

nication—where tightly coupled subsystems interact through sparse interlinks
2. Stress Accumulation Rule: Describes how operational pressure builds up in the system over time, reflecting

the slow progression toward criticality seen in real infrastructure. In aviation, stress arises from operational
bottlenecks, environmental hazards, and workforce dynamics. Examples include:

• Uniform random accumulation simulating evenly distributed passenger demand
• Preferential buildup at high-traffic hubs due to dense connecting flight schedules
• Spatially correlated stress representing weather systems affecting multiple nodes simultaneously
• Time-varying accumulation reflecting seasonal travel surges (e.g., holiday peaks at MCO and LAS)

3. Failure Condition: Specifies the threshold at which individual nodes become unstable and trigger redistributive
events, capturing capacity constraints. Examples include:

• Fixed thresholds modeling standardized runway capacity across airports

Salvaña et al.: Preprint submitted to Elsevier Page 4 of 15
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Figure 3: Topology of the U.S. airline network, highlighting its hub-and-spoke structure. Major hubs (red), medium hubs
(orange), and regional hubs (blue) are distinguished by node color; node size reflects hub strength, and edge thickness
indicates route capacity. The network exhibits scale-free properties with pronounced clustering around major airports. All
airport identifiers follow standard International Air Transport Association (IATA) three-letter codes (e.g., ATL for Atlanta,
ORD for Chicago O’Hare).

• Degree-dependent thresholds where large hubs withstand higher stress than regional nodes
• Stochastic thresholds incorporating weather-induced capacity variation
• Dynamic thresholds that adjust under crew shortages or mechanical failures

4. Stress Redistribution Rule: Determines how stress released by failed nodes transfers to neighboring nodes,
governing how local failures cascade. Examples include:

• Equal redistribution across all connected neighbors
• Weighted redistribution where high-capacity nodes absorb proportionally more stress
• Distance-decaying redistribution favoring nearby airports
• Selective redistribution to least-loaded neighbors to mitigate cascade amplification (e.g., stress from failed

EWR preferentially shifts to underutilized PHL rather than already-burdened JFK)
5. Cascade Propagation: Describes how failures recursively trigger other failures until the system reaches a stable

state. This element captures the emergent nature of large-scale disruptions and distinguishes SOC models from
isolated failure simulations. Examples include:

• Recursive toppling where newly overloaded nodes fail in subsequent time steps
• Avalanche termination criteria (e.g., all node loads fall below thresholds)
• Propagation-limited cascades constrained by topology or spatial buffers
• Multi-round propagation with partial recovery between steps to model real-time mitigation

These five elements jointly shape the system’s emergent behavior, including the tail properties of cascading
failure distributions. This study presents the first systematic application of SOC principles to the analysis of air
traffic networks. It shows that extreme disruptions—the frequency and severity of large-scale failures—emerge not
solely from external shocks, but from the local interaction rules embedded within the system. In the context of
aviation, this perspective reveals how operational policies, network architectures, and redistribution protocols interact
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Figure 4: Progression of the U.S. airline network through four phases of SOC: (1) Subcritical State—low system-wide
stress with all nodes operating below capacity (green); (2) Critical State—heterogeneous stress accumulation as the
system approaches instability (yellow to red); (3) Supercritical State—cascading failures initiated by a local shock (blue
star); and (4) Post-Cascade State—widespread collapse with toppled airports (dark red) and partial recovery. Node colors
represent stress levels (green to red), black rings denote capacity thresholds, and node size reflects relative importance.

to shape systemic vulnerability, offering a scientific foundation for evidence-based strategies to enhance infrastructure
resilience.

Our SOC model captures the characteristic evolution of critical infrastructure systems as they transition through
distinct phases of fragility. Figure 4 illustrates this progression in the U.S. airline network—from a stable subcritical
state to a critical state with elevated stress, followed by supercritical conditions where minor shocks can trigger
widespread disruptions, and culminating in a post-cascade state where the network reorganizes. These phases emerge
naturally from the interplay of the model’s five core elements. The SOC framework reproduces essential dynamics:
systems drift toward criticality under normal operations, undergo abrupt cascades when local thresholds are breached,
and reconfigure with altered stress distributions. Varying model parameters reveals distinct tail behaviors in the
distribution of cascade sizes, highlighting a spectrum of systemic risk scenarios. These results underscore the
importance of network design and operational policy in distinguishing routine disruptions from tipping points that
can lead to systemic collapse.

4. Simulation Study
We conduct simulation experiments to investigate how structural and operational factors shape SOC behavior and

the distribution of cascading failures in airport networks. The baseline configuration includes:
• Failure threshold: Uniform, 𝜃 = 1;
• Stress accumulation: Random addition of 𝛿𝑠 = 0.1 units per step.
We vary the redistribution parameter 𝛽 ∈ {0.5, 0.75, 0.99} to model different stress propagation regimes. Lower

values represent highly dissipative systems; higher values approximate near-total redistribution. These policies are
tested across three network topologies:

• Hub-and-Spoke: Centralized around major hubs (e.g., ATL), with regional nodes dependent on hub connectivity;
• Point-to-Point: Decentralized with dense interconnectivity among secondary airports (e.g., LAS, PHX);
• Fragmented Regional: Decentralized subregions with strong internal links and limited cross-region connectivity.
The simulation results reveal striking differences in cascade behavior across network configurations, with effects

becoming increasingly pronounced as the redistribution parameter 𝛽 increases (Figure 5). At low redistribution
efficiency (𝛽 = 0.5), all networks exhibit similar behavior, characterized by steep power-law exponents (�̂� between
3.22 and 3.67) and limited cascade sizes (maximum of 13–16 airports). In this regime, constrained redistribution acts
as a natural firebreak, containing failures regardless of topology. As redistribution efficiency increases to moderate
levels (𝛽 = 0.75), topological differences begin to emerge. The Point-to-Point network displays a 7.7% probability
of large cascades and a 0.2% system-wide risk. The Hub-and-Spoke network follows with a 6.4% probability of large
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(a) Low Redistribution

(b) Moderate Redistribution

(c) High Redistribution

Figure 5: Power-law distributions of avalanche sizes across three network configurations under varying stress redistribution
parameters (𝛽). As 𝛽 increases, topological effects become more pronounced, with clearer differentiation in tail behavior
and scaling exponents under high redistribution efficiency.

cascades and 0.1% system-wide risk, while the Fragmented Regional network maintains strong containment, showing
only a 2.0% probability of large cascades and a maximum impact of 20 airports (Figure 6).

At high redistribution efficiency (𝛽 = 0.99), topology effects become dominant. Both Hub-and-Spoke and Point-
to-Point configurations exhibit extreme vulnerability, with large cascade probabilities exceeding 56% and system-
wide risks reaching 37.1% and 61.6%, respectively. Even the Fragmented Regional network—despite its decoupled
design—shows a 56.7% probability of large cascades and 32.7% system-wide risk, indicating that highly efficient
Salvaña et al.: Preprint submitted to Elsevier Page 7 of 15
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(a)

(b)

(c)
Figure 6: Cascading failure risk across network configurations, showing the probability of large-scale events, worst-case
cascade sizes, and average cascade intensity under varying stress redistribution levels. Results highlight how network
topology shapes systemic vulnerability, especially under high-efficiency redistribution.

stress transfer can breach regional boundaries. These findings reveal a fundamental trade-off in aviation network
design: operational improvements that enhance redistribution also increase systemic fragility by enabling failure
propagation. The Hub-and-Spoke network is vulnerable due to centralization, while the Point-to-Point network’s dense
interconnectivity creates multiple cascade pathways under high 𝛽. By contrast, the Fragmented Regional network
exhibits higher resilience in most scenarios—yet remains susceptible under extreme redistribution. This underscores
the need for balanced design strategies that weigh efficiency against fragility in the face of cascading failure dynamics.
Salvaña et al.: Preprint submitted to Elsevier Page 8 of 15
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5. SOC-Based Early Warning System: Predicting Cascade Propagation Patterns
Building on the SOC framework, we develop an early warning system (EWS) to identify vulnerable nodes and

anticipate cascade propagation before catastrophic failures occur. This provides actionable insights for proactive risk
management and resource allocation in critical infrastructures.
5.1. Early Warning System Framework

The EWS monitors vulnerability indicators under the most cascade-prone operational scenario and applies five
complementary metrics that capture distinct dimensions of risk and cascade dynamics:

• Airport Criticality Index: A composite measure integrating structural and operational factors:

𝐶𝑖 = 𝑤1 ⋅
𝑘𝑖

max𝑗(𝑘𝑗)
+𝑤2 ⋅

𝐵𝑖
max𝑗(𝐵𝑗)

+𝑤3 ⋅
𝐹𝑖

max𝑗(𝐹𝑗)
(1)

where 𝑘𝑖 is degree centrality, 𝐵𝑖 is betweenness centrality, and 𝐹𝑖 is failure frequency. We assign weights
𝑤1 = 0.3, 𝑤2 = 0.3, and 𝑤3 = 0.4, with greater emphasis on observed failure patterns.

• Cascade Participation Frequency: Measures how often airport 𝑖 is involved in cascade events:

𝑃𝑖 =
𝑁𝑐
∑

𝑐=1
𝐼(𝑖 ∈ 𝐴𝑐) (2)

where 𝑁𝑐 is the total number of cascades and 𝐴𝑐 is the set of airports affected in cascade 𝑐.
• Avalanche Trigger Propensity: Measures how frequently airport 𝑖 initiates a cascading failure:

𝑇𝑖 =
𝑁𝑐
∑

𝑐=1
𝐼(𝑖 = trigger(𝑐)) (3)

• Contagion Risk: Quantifies probability flowing from airport 𝑖, indicating its influence on secondary failures:
𝑅out
𝑖 =

∑

𝑗≠𝑖
𝑃 (𝑗|𝑖) (4)

where 𝑃 (𝑗|𝑖) = 𝑁𝑖→𝑗∕𝑁𝑖 is the conditional probability that 𝑗 fails given 𝑖 has failed.
• Susceptibility Risk: Measures how often airport 𝑗 experiences secondary failures from upstream disruptions:

𝑅in
𝑗 =

∑

𝑖≠𝑗
𝑃 (𝑗|𝑖) (5)

5.2. Results and Validation
Figure 7 summarizes EWS results, revealing distinct patterns of vulnerability across the network. The analysis

uncovers multiple risk dimensions, each requiring targeted intervention strategies.
Static vulnerability assessment ranks major hubs highest across all metrics. DFW leads in criticality (0.98),

followed by DEN (0.96) and SFO (0.90), reflecting high connectivity and stress exposure. Cascade participation is
also dominated by DFW (9,254), DEN (9,233), and SFO (9,169), while avalanche initiation is most frequent at LAX
(564), ATL (558), and JFK (545).

Dynamic propagation analysis identifies the most dangerous sequence as MDW → ATL (0.528 conditional
probability), followed by STL → LAX (0.464) and HNL → ATL (0.426). When ATL fails, the most likely secondary
failures occur at LAX (0.250), ORD (0.164), and DFW (0.139). System-wide susceptibility is highest for ATL (3.86),
LAX (3.03), and ORD (2.50), underscoring their roles as high-risk convergence points.

The convergence of DFW, DEN, and SFO across static metrics, and ATL’s prominence in dynamic propagation
pathways, highlights key nodes requiring early intervention. Critical airports benefit from enhanced monitoring and
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Figure 7: Comprehensive SOC-based EWS analysis. Top panels show static vulnerability metrics: criticality scores (left),
cascade participation frequency (middle), and avalanche trigger propensity (right). Bottom panels present dynamic failure
propagation analysis: most dangerous failure sequences (left), conditional failure probabilities following ATL failure (middle),
and overall vulnerability to secondary failures (right).

structural reinforcement; cascade-prone airports need stress-buffering mechanisms; and trigger-prone airports merit
preemptive stabilization to reduce cascade risk.

These simulation-based results demonstrate the SOC framework’s ability to identify latent vulnerabilities and
anticipate propagation pathways. The EWS offers both strategic risk profiling and tactical sequence prediction, enabling
more proactive risk governance. It generalizes across network types and operational regimes, making it broadly
applicable to aviation and other interdependent infrastructure systems.

6. SOC-Based Climate Vulnerability Assessment: Hurricane-Driven Cascade Amplification
The SOC framework provides a basis for operational stress testing to assess climate-driven cascade amplification.

This enables policy-oriented scenario analysis by systematically varying hurricane intensity 𝐼ℎ as a stress-testing
parameter, allowing exploration of climate trajectories and resilience strategies under increasing environmental
pressure.

Simulations reveal that SOC systems exhibit nonlinear responses to forcing. Cascade frequency increases sharply
with higher hurricane intensity. As shown in Figure 8a, the rate of cascade events climbs from 119.9 under minimal
forcing to 149.5 under current climate (+25%) and 200.7 under future climate conditions (+67%). This accelerating
response highlights the network’s sensitivity to compounding stress and the onset of critical transitions.

Beyond frequency, the size distribution of cascading failures undergoes a regime shift. Cascades are categorized by
operational impact: minor (1–2 airports), moderate (3–5), major (6–10), and catastrophic (>10). Figure 8b shows how
increasing hurricane intensity shifts the system toward larger, more destructive events. Under future climate conditions,

Salvaña et al.: Preprint submitted to Elsevier Page 10 of 15
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(a) Cascade frequency increases by 67%. (b) Catastrophic cascades rise from 12.4% to 30.2%.

(c) Climate change vastly increases passenger disruptions. (d) Economic losses increase 8.3×.
Figure 8: Climate-driven cascade amplification across four impact dimensions—event frequency, cascade severity, passenger
disruption, and economic cost—under increasing hurricane intensity.

catastrophic cascades rise to 30.2% of all events—2.4× more than under baseline forcing—while minor disruptions
decline to 38.7%.

To evaluate real-world implications, we simulate passenger disruptions by multiplying cascade size by a base
disruption of 0.08 million passengers per airport. Figure 8c reveals dramatic increases in both median and extreme
disruption events, with future scenarios producing frequent billion-passenger outages—indicating the potential for
unprecedented transportation crises.

Economic impacts are estimated using the cost function:
𝐶total(𝑠) = 𝑠 ⋅ 𝐶base + 𝑠1.2 ⋅ 𝐶cascade,

where 𝐶base = $15 million and 𝐶cascade = $10 million. This structure captures both linear per-airport damages and
super-linear cascade amplification. As shown in Figure 8d, total simulated impact escalates from $1.76 trillion (minimal
forcing) to $14.6 trillion (future climate), representing an 8.3× increase driven by systemic instability—not just storm
severity.

Together, these findings demonstrate that SOC-based stress testing offers actionable insights into nonlinear tipping
points. A 67% increase in event frequency under moderate climate forcing signals proximity to operational thresholds.
The shift toward catastrophic dominance and 8.3× economic cost amplification reflect superlinear vulnerability
growth—where failures become structurally inevitable, not just statistically more frequent.

Crucially, this framework allows exploration of adaptive strategies. Adjusting network parameters—such as
increasing redundancy, implementing preemptive storm protocols, or targeting resilience investments—can be sys-
tematically tested within the SOC model. Unlike traditional risk assessments based on historical extrapolation, this
approach accounts for emergent failure modes under future conditions. As a result, it provides policymakers with the

Salvaña et al.: Preprint submitted to Elsevier Page 11 of 15



SOC

Figure 9: Airport vulnerability heatmap showing frequency of involvement in cascade events across climate scenarios. Coastal
hurricane-prone airports show sharply increasing vulnerability under future climate conditions. Darker colors indicate higher
cascade involvement.

scientific justification needed for forward-looking infrastructure planning, transforming climate risk management from
reactive loss estimation to proactive systems-level optimization.

The SOC model enables identification of critical infrastructure nodes by mapping how climate change induces
spatially heterogeneous risk across the airport network. We estimate the frequency of airport-specific cascade
involvement as a function of hurricane exposure and climate forcing intensity:

𝑉airport(𝐼ℎ) =
{

10 ⋅ 𝐼ℎ ⋅ 𝑓cascade if hurricane-prone
2 ⋅ 𝐼ℎ ⋅ 𝑓cascade otherwise (6)

where 𝑉airport(𝐼ℎ) denotes the expected number of cascade involvements, 𝑓cascade is the system-wide cascade frequency,
and the multipliers reflect elevated exposure and fragility in hurricane-prone coastal locations.

Figure 9 illustrates these spatial patterns, revealing a dramatic bifurcation between coastal and inland airports as
climate intensity increases. Under future climate conditions, key coastal hubs—including ATL, MIA, JFK, MCO,
TPA, and IAH—exhibit sharp increases in cascade involvement, transitioning from moderate to extreme vulnerability.
In contrast, inland airports remain comparatively insulated, highlighting the spatial concentration of systemic risk.

This asymmetric vulnerability distribution arises from the dual role of hurricane-prone airports as both direct
impact sites and cascade accelerators. Their geographic exposure to extreme weather, combined with their structural
centrality in the network, compounds risk via failure propagation. The five-fold differential between coastal and inland
nodes illustrates the emergent dynamics of criticality, where topological and climatological factors jointly determine
system fragility.

These results underscore the value of geographically targeted resilience interventions. By reinforcing coastal
hubs that dominate cascade pathways, decision-makers can achieve outsized reductions in systemic risk. The SOC
model thus supports climate adaptation planning by identifying where mitigation resources yield the highest marginal
benefit—at nodes where localized reinforcement produces system-wide stability gains.

7. Conclusion and Future Directions
This study demonstrates that modern aviation networks, optimized for efficiency, naturally evolve toward self-

organized criticality (SOC)—a regime where small disruptions can trigger cascading failures with systemic con-
sequences. This reflects the efficiency–resilience paradox: design choices that improve day-to-day performance can
undermine shock absorption, making highly efficient networks more fragile under stress.

We show that network structure and operational rules jointly determine the scale of disruptions. Dense interconnec-
tivity and centralized hubs—often seen as strengths—can amplify failures, while decentralized or modular architectures
contain them. Across all simulations, we observe universal power-law behavior, revealing that while specific cascades
are unpredictable, the statistical structure of risk is not. This insight reframes disaster risk management: resilience
depends less on rare shocks and more on latent structural fragility.
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Our contribution is threefold: (1) an SOC model of the U.S. air traffic system that reveals how cascading failures
emerge; (2) an early warning system that quantifies risk using power-law diagnostics and cascade dynamics; and (3) a
climate stress-testing module that quantifies how extreme weather accelerates network collapse under future scenarios.

The integration of SOC theory, simulation, and real-time monitoring provides a roadmap for next-generation risk
systems. By tracking early signals—such as shifting power-law exponents or clustered failures—decision-makers can
anticipate tipping points and intervene before collapse. The approach applies beyond aviation: SOC explains fragility
in power grids, hospitals, flood infrastructure, and supply chains—all networks where compounding stress and tight
coupling drive systemic risk.

Ultimately, SOC enables a new paradigm for resilience. The goal is not to prevent all failures, but to understand
how risk emerges, where it concentrates, and how systems can be made robust—not just to known threats, but to the
unpredictable dynamics of an interconnected world.

References
[1] ABC News, 2023. Southwest airlines holiday meltdown will cost company up to $825 million. ABC News URL: https://abcnews.go.com/

Business/southwest-airlines-holiday-meltdown-cost-company-825-million/story?id=96261607. the company canceled
more than 16,000 flights over 11 days.

[2] Adami, C., 1995. Self-organized criticality in living systems. Physics Letters A 203, 29–32.
[3] AghaKouchak, A., Chiang, F., Huning, L.S., Love, C.A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S.M., Ragno, E., Sadegh,

M., 2020. Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary Sciences 48, 519–548.
[4] AghaKouchak, A., Huning, L.S., Chiang, F., Sadegh, M., Vahedifard, F., Mazdiyasni, O., Moftakhari, H., Mallakpour, I., 2018. How do natural

hazards cascade to cause disasters?
[5] Alexander, D., 2018. A magnitude scale for cascading disasters. International Journal of Disaster Risk Reduction 30, 180–185.
[6] Aschwanden, M.J., Crosby, N.B., Dimitropoulou, M., Georgoulis, M.K., Hergarten, S., McAteer, J., Milovanov, A.V., Mineshige, S., Morales,

L., Nishizuka, N., et al., 2016. 25 years of self-organized criticality: solar and astrophysics. Space Science Reviews 198, 47–166.
[7] Bak, P., Tang, C., Wiesenfeld, K., 1987. Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters 59, 381–384.
[8] Barquet, K., Englund, M., Inga, K., André, K., Segnestam, L., 2024. Conceptualising multiple hazards and cascading effects on critical

infrastructures. Disasters 48, e12591.
[9] Bhattacharya, K., Manna, S., 2007. Self-organized critical models of earthquakes. Physica A: Statistical Mechanics and its Applications 384,

15–20.
[10] Biondo, A.E., Pluchino, A., Rapisarda, A., 2015. Modeling financial markets by self-organized criticality. Physical Review E 92, 042814.
[11] Bouchaud, J.P., 2024. The self-organized criticality paradigm in economics & finance. arXiv preprint arXiv:2407.10284 .
[12] Brunner, L.G., Peer, R., Zorn, C., Paulik, R., Logan, T., 2024. Understanding cascading risks through real-world interdependent urban

infrastructure. Reliability Engineering & System Safety 241, 109653.
[13] Bureau of Transportation Statistics, 2025. Transtats: The intermodal transportation database. URL: https://www.transtats.bts.gov/.

accessed May 27, 2025.
[14] Carreras, B.A., Newman, D.E., Dobson, I., Poole, A.B., 2004. Evidence for self-organized criticality in a time series of electric power system

blackouts. IEEE Transactions on Circuits and Systems I: Regular Papers 51, 1733–1740.
[15] Chen, F., Jia, H., Du, E., Chen, Y., Wang, L., 2024. Modeling of the cascading impacts of drought and forest fire based on a bayesian network.

International Journal of Disaster Risk Reduction 111, 104716.
[16] Chen, K., Bak, P., Obukhov, S., 1991. Self-organized criticality in a crack-propagation model of earthquakes. Physical Review A 43, 625.
[17] CNN, 2003. Major power outage hits new york, other large cities. URL: https://www.cnn.com/2003/US/08/16/power.outage/.

accessed: 2025-06-06.
[18] CNN Travel, 2023. FAA system outage causes thousands of flight delays and cancellations across the US. CNN URL: https://www.cnn.

com/travel/article/faa-computer-outage-flights-grounded. nOTAM system failure led to nationwide ground stop affecting over
9,500 flights.

[19] Comfort, L.K., 1999. Shared risk: Complex systems in seismic response. Pergamon, Oxford, UK.
[20] Cuartas, J., Frazier, T., Wood, E., 2021. The application of cascading consequences for emergency management operations. Natural hazards

108, 2919–2938.
[21] Cutter, S.L., 2018. Compound, cascading, or complex disasters: What’s in a name? Environment: Science and Policy for Sustainable

Development 60, 16–25.
[22] De Ruiter, M.C., Couasnon, A., van den Homberg, M.J., Daniell, J.E., Gill, J.C., Ward, P.J., 2020. Why we can no longer ignore consecutive

disasters. Earth’s future 8, e2019EF001425.
[23] Diakakis, M., Sarantopoulou, A., Gogou, M., Filis, C., Nastos, P., Kapris, I., Vassilakis, E., Konsolaki, A., Lekkas, E., 2025. Cascade effects

induced by extreme storms and floods: The case of storm daniel (2023) in greece. Water 17, 912.
[24] Dobson, I., Carreras, B.A., Lynch, V.E., Newman, D.E., 2007. Complex systems analysis of series of blackouts: Cascading failure, critical

points, and self-organization. Chaos: An Interdisciplinary Journal of Nonlinear Science 17.
[25] Gang, J.E., Jia, W., Herniter, I.A., 2022. Sand and fire: applying the sandpile model of self-organised criticality to wildfire mitigation.

International Journal of Wildland Fire 31, 847–856.
[26] Gill, J.C., Malamud, B.D., 2016. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth System

Dynamics 7, 659–679.

Salvaña et al.: Preprint submitted to Elsevier Page 13 of 15

https://abcnews.go.com/Business/southwest-airlines-holiday-meltdown-cost-company-825-million/story?id=96261607
https://abcnews.go.com/Business/southwest-airlines-holiday-meltdown-cost-company-825-million/story?id=96261607
https://www.transtats.bts.gov/
https://www.cnn.com/2003/US/08/16/power.outage/
https://www.cnn.com/travel/article/faa-computer-outage-flights-grounded
https://www.cnn.com/travel/article/faa-computer-outage-flights-grounded


SOC

[27] Gong, Z., Wang, Y., Wei, G., Li, L., Guo, W., 2020. Cascading disasters risk modeling based on linear uncertainty distributions. International
journal of disaster risk reduction 43, 101385.

[28] Gordan, M., Kountche, D.A., McCrum, D., Schauer, S., König, S., Delannoy, S., Connolly, L., Iacob, M., Durante, N.G., Shekhawat, Y., et al.,
2024. Protecting critical infrastructure against cascading effects: The precinct approach. Resilient Cities and Structures 3, 1–19.

[29] Gratton, G.B., Williams, P.D., Padhra, A., Rapsomanikis, S., 2022. Reviewing the impacts of climate change on air transport operations. The
Aeronautical Journal 126, 209–221.

[30] Guo, Y., Liu, F., Song, J.S., Wang, S., 2024. Supply chain resilience: A review from the inventory management perspective. Fundamental
Research .

[31] Hergarten, S., Neugebauer, H.J., 1998. Self-organized criticality in a landslide model. Geophysical research letters 25, 801–804.
[32] Hesse, J., Gross, T., 2014. Self-organized criticality as a fundamental property of neural systems. Frontiers in systems neuroscience 8, 166.
[33] Hoff, R., Sparks, R., Chester, M., Mustafa, A., Johnson, N., Birchfield, A., McPhearson, T., Li, R., Ahmad, N., Searles, I., 2025. Cascading

failure propagation and perfect storms in interdependent infrastructures. ASCE OPEN: Multidisciplinary Journal of Civil Engineering 3,
04025001.

[34] Huang, S., Li, C., 2024. Coordination of preventive, emergency and restoration dispatch against cascading failures for resilience enhancement.
International Journal of Electrical Power & Energy Systems 160, 110136.

[35] Huggins, T.J., E, F., Chen, K., Gong, W., Yang, L., 2020. Infrastructural aspects of rain-related cascading disasters: a systematic literature
review. International journal of environmental research and public health 17, 5175.

[36] Ilalokhoin, O., Pant, R., Hall, J.W., 2023. A model and methodology for resilience assessment of interdependent rail networks–case study of
great britain’s rail network. Reliability Engineering & System Safety 229, 108895.

[37] Kumasaki, M., King, M., Arai, M., Yang, L., 2016. Anatomy of cascading natural disasters in japan: main modes and linkages. Natural
Hazards 80, 1425–1441.

[38] Lawrence, J., Blackett, P., Cradock-Henry, N.A., 2020. Cascading climate change impacts and implications. Climate Risk Management 29,
100234.

[39] Lee, R., White, C.J., Adnan, M.S.G., Douglas, J., Mahecha, M.D., O’Loughlin, F.E., Patelli, E., Ramos, A.M., Roberts, M.J., Martius, O.,
et al., 2024. Reclassifying historical disasters: From single to multi-hazards. Science of the Total Environment 912, 169120.

[40] Leppold, C., Morrice, H., Brady, K., Reifels, L., Abeysinghe, S., Quinn, P., Gibbs, L., 2025. Recovery work in cascading and compounding
disasters: A qualitative study of community recovery workers in australia. International Journal of Disaster Risk Reduction 116, 105152.

[41] Levin, S.A., 2005. Self-organization and the emergence of complexity in ecological systems. BioScience 55, 1075–1079.
[42] Li, B., Liu, C., Yin, Y., Jiang, Q., Zhang, Y., Liu, T., 2025. Study on power system resilience assessment considering cascading failures during

wildfire disasters. Energy Reports 13, 1819–1833.
[43] Little, R.G., 2012. Managing the risk of aging infrastructure. IRGC, Public Sector Governance of Emerging Risks Council, Infrastructure

Case .
[44] Liu, P., Liu, P., Yang, Y., Wu, J., Tian, G., Zhang, Z., Chai, L., 2025. Risk analysis and mitigation strategy of power system cascading failure

under the background of weather disaster. Processes 13, 45.
[45] Mühlhofer, E., Koks, E.E., Kropf, C.M., Sansavini, G., Bresch, D.N., 2023. A generalized natural hazard risk modelling framework for

infrastructure failure cascades. Reliability Engineering & System Safety 234, 109194.
[46] New York Independent System Operator, 2023. A look back at the northeast blackout of 2003 and lessons learned. URL: https:

//www.nyiso.com/-/a-look-back-at-the-northeast-blackout-of-2003-and-lessons-learned. accessed: 2025-06-06.
[47] Perrow, C., 1984. Normal accidents: Living with high-risk technologies. Basic Books.
[48] Pescaroli, G., Alexander, D., 2015. A definition of cascading disasters and cascading effects: Going beyond the “toppling dominos” metaphor.

Planet@ Risk 3, 58–67.
[49] Pescaroli, G., Alexander, D., 2018. Understanding compound, interconnected, interacting, and cascading risks: a holistic framework. Risk

analysis 38, 2245–2257.
[50] Pescaroli, G., Suppasri, A., Galbusera, L., 2024. Progressing the research on systemic risk, cascading disasters, and compound events. Progress

in Disaster Science 22, 100319.
[51] Plenz, D., Ribeiro, T.L., Miller, S.R., Kells, P.A., Vakili, A., Capek, E.L., 2021. Self-organized criticality in the brain. Frontiers in Physics 9,

639389.
[52] Purwar, D., Flacke, J., Guzman, E.A., Sliuzas, R., 2024. A qualitative analysis of cascading effects of critical infrastructure service failure

post torrential floods in formal & informal settlement: the study-case of medellin city, colombia. Sustainable and Resilient Infrastructure 9,
496–512.

[53] Ramos, R., Sassi, R., Piqueira, J.R.C., 2011. Self-organized criticality and the predictability of human behavior. New Ideas in Psychology 29,
38–48.

[54] Salvaña, M.L.O., Tangonan, G.L., 2025. Predicting power grid failures using self-organized criticality: A case study of the texas grid 2014-
2022. arXiv preprint arXiv:2504.10675 Accepted for the 2025 MRS International Risk Conference in July, Boston, MA, USA.

[55] Scheinkman, J.A., Woodford, M., 1994. Self-organized criticality and economic fluctuations. The American Economic Review 84, 417–421.
[56] Shimizu, M., Clark, A.L., 2015. Interconnected risks, cascading disasters and disaster management policy: a gap analysis. Planet@ Risk 3.
[57] Sornette, A., Sornette, D., 1989. Self-organized criticality and earthquakes. Europhysics Letters 9, 197.
[58] Sutanto, S.J., Vitolo, C., Di Napoli, C., D’Andrea, M., Van Lanen, H.A., 2020. Heatwaves, droughts, and fires: Exploring compound and

cascading dry hazards at the pan-european scale. Environment international 134, 105276.
[59] Tang, P., Zhong, W., Wen, J., Shao, S., Zhou, D., Huang, S., 2023. Developing and understanding cascading effects scenario of typhoons in

coastal mega-cities from system perspectives for disaster risk reduction: A case study of shenzhen, china. International Journal of Disaster
Risk Reduction 92, 103691.

Salvaña et al.: Preprint submitted to Elsevier Page 14 of 15

https://www.nyiso.com/-/a-look-back-at-the-northeast-blackout-of-2003-and-lessons-learned
https://www.nyiso.com/-/a-look-back-at-the-northeast-blackout-of-2003-and-lessons-learned


SOC

[60] The Washington Post, 2022. Threat of hurricane ian cancels more than 3,000 flights in florida. The Washington Post URL: https:
//www.washingtonpost.com/travel/2022/09/28/hurricane-ian-flight-cancellations/. airlines canceled more than 3,000
U.S. flights as Hurricane Ian approached Florida.

[61] Verschuur, J., Koks, E.E., Hall, J.W., 2023. Systemic risks from climate-related disruptions at ports. Nature climate change 13, 804–806.

Mary Lai O. Salvaña is an Assistant Professor of Statistics at the University of Connecticut (UConn). Prior to joining
UConn, she was a Postdoctoral Fellow at the Department of Mathematics at University of Houston. She received her
Ph.D. in Statistics at the King Abdullah University of Science and Technology (KAUST), Saudi Arabia. She obtained
her BS and MS degrees in Applied Mathematics from Ateneo de Manila University, Philippines, in 2015 and 2016,
respectively. Her research interests include extreme and catastrophic events, risks, disasters, spatial and spatio-temporal
statistics, environmental statistics, computational statistics, large-scale data science, and high-performance computing.

Harold Jay M. Bolingot holds a Bachelor of Science in Computer Engineering from Ateneo de Manila University,
Philippines, and a Master of Engineering in Assistive Robotics from Kyushu Institute of Technology, Japan. His research
expertise lies in machine learning, with a focus on convolutional neural networks, computer vision, and biomedical signal
processing.

Gregory L. Tangonan graduated in Physics from Ateneo de Manila University and earned his PhD in Applied Physics from
the California Institute of Technology. He spent 32 years at Hughes Research Laboratories in Malibu, California, retiring
as Lab Director of the Communications Laboratory. His expertise spans fiber optics, wireless communications, materials
science, and complex systems science. He has published over 200 papers and holds 49 U.S. patents. After retiring, he
returned to his alma mater and founded the Ateneo Innovation Center (AIC), which is actively engaged in disaster risk and
resilience research. AIC has developed Resilience Hubs for nationwide deployment in the Philippines and has been at the
forefront of research on cascaded disasters and risk assessment.

Salvaña et al.: Preprint submitted to Elsevier Page 15 of 15

https://www.washingtonpost.com/travel/2022/09/28/hurricane-ian-flight-cancellations/
https://www.washingtonpost.com/travel/2022/09/28/hurricane-ian-flight-cancellations/

