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Previously...
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Continuous Random Variables

▶ Cumulative Distribution Function (CDF) of Y :

F (y) = P(Y ≤ y), −∞ < y < ∞.

▶ Probability Density Function (PDF) of Y :

f (y) =
dF (y)

dy
= F ′(y).

▶ PDF to CDF:

F (y) =

∫ y

−∞
f (t)dt.

▶ Probability that Y falls in the interval [a, b] is
▶ Using the PDF:

P(a ≤ Y ≤ b) =

∫ b

a

f (y)dy

▶ Using the CDF:
P(a ≤ Y ≤ b) = F (b)− F (a)
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Expected Value of Continuous Random Variables

▶ Expected value of Y : is a measure of central tendency

µ = E (Y ) =

∫ ∞

−∞
yf (y)dy

▶ Expected value of functions of Y : Let g(Y ) be a real-valued function
of Y .

E{g(Y )} =

∫ ∞

−∞
g(y)f (y)dy

▶ Expected value of a constant: Let c be a constant. Then E (c) = c .

▶ Expected value of a scaled Y : Let g(Y ) be a function of Y , and c be
a constant.

E{cg(Y )} = cE{g(Y )}
▶ Expected value of a sum of random variables: Let

g1(Y ), g2(Y ), . . . , gk(Y ) be k functions of Y .

E{g1(Y ) + g2(Y ) + . . .+ gk(Y )} = E{g1(Y )}+ E{g2(Y )}+ . . .+ E{gk(Y )}
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Variance of Continuous Random Variables

▶ Variance of Y : is a measure of the dispersion or scatter of the values
of the random variable about the mean µ.

σ2 = V (Y ) = E{(Y − µ)2}

▶ More useful formula to compute the variance:

σ2 = V (Y ) = E (Y 2)− µ2

Note: The formula above can also be written as σ2 = V (Y ) = E(Y 2)−{E(Y )}2.
▶ Standard deviation of Y :

σ =
√

V (Y )
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Uniform Distribution
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Uniform Distribution

Definition 3.7: Uniform Distribution

If θ1 < θ2, a random variable Y is said to have a continuous uniform
probability distribution on the interval (θ1, θ2) if and only if the density
function of Y is

f (y) =

{
1

θ2−θ1
, θ1 ≤ y ≤ θ2,

0, elsewhere.

▶ Notation: Y ∼ U(θ1, θ2), read as: “Y is a uniform random variable
on the interval (θ1, θ2).”

▶ CDF: F (y) = P(Y ≤ y) =
∫ y
−∞ f (t)dt =


0, y < θ1
y−θ1
θ2−θ1

, θ1 ≤ y ≤ θ2

1, y > θ2.
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Uniform Distribution

Usage:
Random number generator: As starting point for generating values from
more complicated distributions...
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Uniform Distribution

Usage:
Procedural Generation: Introducing randomness into computer gaming
algorithms to produce unpredictable or unique contents...

Source: https://www.thegamer.com/best-procedurally-generated-games-minecraft
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Uniform Distribution

Usage:
Randomized Control Trial: randomly assigning participants to either an
experimental group or a control group to measure the effectiveness of an
intervention or treatment....

Source: https://www.simplypsychology.org/randomized-controlled-trial.html
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Uniform Distribution

Usage:
Data Privacy: Adding or multiplying a random number to confidential
quantitative attributes

Source: https://medium.com/@ms somanna/

guide-to-adding-noise-to-your-data-using-python-and-numpy-c8be815df524
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Uniform Distribution

Theorem 4.6

If θ1 < θ2 and Y is a random variable uniformly distributed on the interval
(θ1, θ2), then

µ = E (Y ) =
θ1 + θ2

2
and σ2 = V (Y ) =

(θ2 − θ1)
2

12
.

Proof:

E(Y ) =
∫∞
−∞ yf (y)dy def’n of expected value

=
∫ θ2
θ1

y
(

1
θ2−θ1

)
dy f (y) =

{
1

θ2−θ1
, θ1 ≤ y ≤ θ2,

0, elsewhere

=
(

1
θ2−θ1

)
y2

2

∣∣∣θ2
θ1

=
θ22−θ21

2(θ2−θ1)

= (θ2−θ1)(θ2+θ1)
2(θ2−θ1)

diff. of two squares

= θ2+θ1
2

.

(cont’d next slide...)

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 10 13 / 49



Uniform Distribution

Proof:
E(Y 2) =

∫∞
−∞ y 2f (y)dy def’n of expected value

=
∫ θ2
θ1

y 2
(

1
θ2−θ1

)
dy f (y) =

{
1

θ2−θ1
, θ1 ≤ y ≤ θ2,

0, elsewhere

=
(

1
θ2−θ1

)
y3

3

∣∣∣θ2
θ1

=
θ32−θ31

3(θ2−θ1)

=
(θ2−θ1)(θ

2
2+θ2θ1+θ21)

3(θ2−θ1)
diff. of two cubes

=
θ22+θ2θ1+θ21

3
.

V (Y ) = E(Y 2)− {E(Y )}2 def’n of variance

=
θ22+θ2θ1+θ21

3
−

(
θ2+θ1

2

)2
=

θ22+θ2θ1+θ21
3

− θ22+2θ2θ1+θ21
4

=
4(θ22+θ2θ1+θ21)−3(θ22+2θ2θ1+θ21)

12

=
4θ22+4θ2θ1+4θ21−3θ22−6θ2θ1−3θ21)

12

=
θ22−2θ2θ1+θ21

12

= (θ2−θ1)
2

12
.
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Uniform Distribution
Y~U(a,b)

E(Y)
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Uniform Distribution

Example 1:
A continuous random variable X is uniformly distributed over the interval
[b, 4b] where b is a constant.

a What is E (X )?

Solution:
E (X ) = b+4b

2 = 5b
2 . Theorem 4.6: If X ∼ U(θ1, θ2), then E(X ) =

θ1+θ2
2

.
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Uniform Distribution

Example 1:
A continuous random variable X is uniformly distributed over the interval
[b, 4b] where b is a constant.

b Show that V (X ) = 3b2

4 ?

Solution:
V (X ) = (4b−b)2

12 = (3b)2

12 = 9b2

12 = 3b2

4 . Theorem 4.6: If X ∼ U(θ1, θ2), then V (X ) =
(θ2−θ1)

2

12
.
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Uniform Distribution

Example 1:
A continuous random variable X is uniformly distributed over the interval
[b, 4b] where b is a constant.

c Find V (3− 2X ).

Solution:
V (3− 2X ) = (−2)2V (X ) = (4)3b

2

4 = 3b2. Properties of variance and V (X ) = 3b2

4
from b).
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Uniform Distribution

Example 2:
The continuous random variable X is uniformly distributed over the
interval [−4, 6].

a Find P(X ≤ 2.4).

Solution:
P(X ≤ 2.4) =

∫ 2.4
−∞ f (x)dx probability = area under the curve

=
∫ 2.4
−4

1
6−(−4)dx PDF of uniform: f (x) =

{
1

θ2−θ1
, θ1 ≤ x ≤ θ2,

0, elsewhere

= 1
10x

∣∣2.4
−4

= 1
10(2.4− (−4)) = 0.64.
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Uniform Distribution

Example 2:
The continuous random variable X is uniformly distributed over the
interval [−4, 6].

b The continuous random variable Y is uniformly distributed over the
interval [a, 4a]. Find the value of a such that
P
(
X ≤ 8

3

)
= P

(
Y ≤ 8

3

)
.

Solution:

P
(
X ≤ 8

3

)
=

∫ 8
3
−∞ f (x)dx probability = area under the curve

=
∫ 8

3
−4

1
6−(−4)dx PDF of uniform: f (x) =

{
1

θ2−θ1
, θ1 ≤ x ≤ θ2,

0, elsewhere

= 1
10x

∣∣ 83
−4

= 1
10

(
8
3 − (−4)

)
= 1

10

(
20
3

)
= 2

3 .

P
(
Y ≤ 8

3

)
=

∫ 8
3
−∞ f (y)dy probability = area under the curve

=
∫ 8

3
a

1
4a−ady PDF of uniform: f (y) =

{
1

θ2−θ1
, θ1 ≤ y ≤ θ2,

0, elsewhere

= 1
3ay

∣∣ 83
a
= 1

3a

(
8
3 − a

)
= 8

9a −
1
3 .

⇒ 2
3 = 8

9a −
1
3 ⇒ a = 8

9 .
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Normal (Gaussian) Distribution
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Gaussian Distribution
Normal Curve

µ µ + σ µ + 2σ µ + 3σµ − σµ − 2σµ − 3σ

E(Y)

σσ

f(
y)

y

▶ The normal curve is perhaps the most important probability graph in
all of statistics.

▶ bell-shaped curve
▶ high in the middle (mean, µ)
▶ gradually tails off in each direction

▶ More values at the center of the distribution and few in the tails
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Gaussian Distribution: History

Abraham de Moivre
Source: Cambridge University Library

▶ He was solving a gambling problem:

▶ p(y) =

(
n
y

)
py (1− p)n−y .

▶ p(60) + p(61) + p(62) + . . . .

VERY TEDIOUS!!!

▶ He noticed that as n increases, the
shape of the binomial distribution
approaches a smooth curve.
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▶ He found a mathematical expression
for this curve.

▶ So instead of having to add lots of
individual numbers you can just find
the area under the curve...
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Gaussian Distribution: History

Carl Friedrich Gauss
Portrait by Christian Albrecht Jensen, 1840

▶ He developed the Gaussian PDF:

f (y) =
1√
2πσ2

e−
(y−µ)2

2σ2 ,−∞ ≤ y ≤ ∞

▶ expected value: µ
▶ variance: σ2

▶ Approximating distribution to:
▶ binomial
▶ Poisson
▶ χ2

▶ Student-t
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Gaussian Distribution: Normality is Everywhere

Golf

Source: https://uc-r.github.io/assumptions normality
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Gaussian Distribution: Normality is Everywhere

Human Height

Source:

https://www.ucd.ie/ecomodel/Resources/Sheet4 data distributions WebVersion.html
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Gaussian Distribution: Normality is Everywhere

Housefly Wingspan

Source: https://seattlecentral.edu/qelp/sets/057/057.html
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Gaussian Distribution: Normality is Everywhere

Sports

Sources:
https://rpubs.com/Thom9567/1012507

https://priorprobability.com/2014/12/06/nba-data-set/
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Gaussian Distribution: Normality is Everywhere

Gym

Source: https://www.reddit.com/r/mildlyinteresting/comments/9omj54/

gaussian distribution of usage marks at my local

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 10 29 / 49

https://www.reddit.com/r/mildlyinteresting/comments/9omj54/gaussian_distribution_of_usage_marks_at_my_local
https://www.reddit.com/r/mildlyinteresting/comments/9omj54/gaussian_distribution_of_usage_marks_at_my_local


Gaussian Distribution: Normality is Everywhere

Exam Scores

Source: https://medium.com/@akashsri306/

the-gaussian-distribution-machine-learnings-secret-weapon-4f37f590718d
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Gaussian Distribution: Normality is Everywhere

Even when they are NOT normal...
we make them normal!
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Gaussian Distribution

Definition 4.8: Gaussian Distribution

A random variable Y is said to have a Gaussian probability distribution if
and only if, for σ > 0 and −∞ < µ < ∞, the density function of Y is

f (y) =
1√
2πσ2

e−
(y−µ)2

2σ2 , −∞ ≤ y ≤ ∞

Theorem 4.7

If Y is a normally distributed random variable with parameters µ and σ,
then

E (Y ) = µ and V (Y ) = σ2.

▶ Notation: Y ∼ N (µ, σ2), read as: “Y is normally distributed with
mean µ and variance σ2.”

▶ The parameter µ locates the center or peak of the distribution.
▶ The parameter σ measures the spread of the distribution.
▶ symmetric at y = µ
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Gaussian Distribution: A Closer Look at the PDF
Normal Curve

µ µ + σ µ + 2σ µ + 3σµ − σµ − 2σµ − 3σ

E(Y)

σσ

f(
y)

y

▶ The center of the curve is determined by µ.

▶ The width of the curve is determined by σ.

▶ The larger σ is, the wider or flatter the curve will be.
▶ The smaller σ is, the narrower or taller the curve will be.

▶ The units in the horizontal axis are given in standard deviations.

▶ The area under the curve to the right of the mean is 0.5.

▶ The area under the curve to the left of the mean is 0.5.
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Gaussian Distribution: The Empirical Rule

Normal Curve

µ µ + σ µ + 2σ µ + 3σµ − σµ − 2σµ − 3σ

E(Y)

68% of the y values
are w/n one sd away

from the mean

95% of the y values are w/n two sd away
from the mean

99.7% of the y values are w/n three sd away from the mean
f(

y)

y

▶ P(µ− σ ≤ Y ≤ µ+ σ) = 0.6827

▶ P(µ− 2σ ≤ Y ≤ µ+ 2σ) = 0.9545

▶ P(µ− 3σ ≤ Y ≤ µ+ 3σ) = 0.9973
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Gaussian Distribution: Areas under the PDF

▶ PDF: f (y) = 1√
2πσ2

e−
(y−µ)2

2σ2 ,−∞ ≤ y ≤ ∞

▶ CDF: F (y) = P(Y ≤ y) =
∫ y
−∞ f (t)dt =

∫ y
−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt

▶ P(a ≤ Y ≤ b) =
∫ b

a
f (y)dy =

∫ b

a
1√
2πσ2

e−
(y−µ)2

2σ2 dy (Using the PDF)

OR
▶ P(a ≤ Y ≤ b) = F (b)− F (a) (Using the CDF)

Unfortunately, closed-form expressions for these integrals do not exist.
These need to be solved using numerical integration techniques.

If these integrals cannot be solved, how do we compute the probabilties or
areas under the normal curve?

Answer: We use the standard normal table:

▶ also known as the Z-table

▶ provides the area under the curve to the left of a z-score (values in
the horizontal axis of a standard normal curve)
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Standard Normal Distribution
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Standard Normal Distribution

▶ Normal (Gaussian) PDF: f (y) = 1√
2πσ2

e−
(y−µ)2

2σ2 , −∞ ≤ y ≤ ∞.

▶ Let Z = Y−µ
σ . What is the distribution of this new random variable?

FZ (z) = P(Z ≤ z) = P

(
Y − µ

σ
≤ z

)
= P (Y ≤ σz + µ)

= FY (σz + µ).

fZ (z) =
d

dz
FZ (z) =

d

dz
FY (σz + µ) def’n of PDF

= σfY (σz + µ) f (y) = F ′(y) and chain rule

= σ
1√
2πσ2

e−
(σz+µ−µ)2

2σ2

=
1√
2π

e−
z2

2 . (This is the standard normal (Gaussian) PDF)

▶ This is known as the standard normal distribution, a special normal
(Gaussian) distribution where µ = 0 and σ = 1.
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Standard Normal Distribution

▶ Turns out, Z = Y−µ
σ is a standard normal random variable.

▶ Notation: Z ∼ N (0, 1)

▶ PDF: ϕ(z) = f (z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞

▶ CDF: Φ(z) = F (z) = P(Z ≤ z) =
∫ z
−∞ ϕ(t)dt =

∫ z
−∞

1√
2π
e−

t2

2 dt

▶ P(a ≤ Z ≤ b) =
∫ b

a
ϕ(z)dz =

∫ b

a
1√
2π
e−

z2

2 dz (Using the PDF)

OR
▶ P(a ≤ Z ≤ b) = Φ(b)− Φ(a) (Using the CDF)

Again, unfortunately, we cannot simplify or solve these integrals.

However, FORTUNATELY, the value of the CDF Φ(z) has already been
precomputed for any number z .

You can find these values in a standard normal table or Z-table.

You need to know how to use the Z-table for the exams!
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Standard Normal Distribution: A Closer Look at the PDF
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Standard Normal Curve

φ(
z)

z or z−score

▶ A standard normal distribution always has a mean of zero.
▶ The unit in the horizontal axis is in standard deviations.
▶ The z-score is a value which the standard normal random variable Z

can take.
▶ The z-score value = -1 is:

▶ 1 standard deviation away from the mean and
▶ falls below the mean since the sign is negative.

▶ The z-score value = 2 is:
▶ 2 standard deviations away from the mean and
▶ found above the mean since the sign is positive.
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Reading the Z-table

▶ Row headings: z-score up to the first decimal place.

▶ Column headings: second decimal place of the z-score.

▶ Cells: areas under the standard normal curve to the left of every z-score.
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Reading the Z-table

▶ Row headings: z-score up to the first decimal place.

▶ Column headings: second decimal place of the z-score.

▶ Cells: areas under the standard normal curve to the left of every z-score.

What is Φ(−2.23) or P(Z ≤ −2.23)?
Answer: 0.01287 = 1.287%
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Reading the Z-table

What is P(−1 ≤ Z ≤ 1)?
Answer: P(−1 ≤ Z ≤ 1) = P(Z ≤ 1)−P(Z ≤ −1) probability = area under the curve

= Φ(1)− Φ(−1) Standard normal CDF

= 0.84134− 0.15866 = 0.68268
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Reading the Z-table

What is P(−2 ≤ Z ≤ 2)?
Answer: P(−2 ≤ Z ≤ 2) = P(Z ≤ 2)−P(Z ≤ −2) probability = area under the curve

= Φ(2)− Φ(−2) Standard normal CDF

= 0.97725− 0.02275 = 0.9545
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Reading the Z-table

What is P(−3 ≤ Z ≤ 3)?
Answer: P(−3 ≤ Z ≤ 3) = P(Z ≤ 3)−P(Z ≤ −3) probability = area under the curve

= Φ(3)− Φ(−3) Standard normal CDF

= 0.99865− 0.00135 = 0.9973
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Reading the Z-table

What is P(Z > 1)?
Answer: P(Z > 1) = 1 − P(Z ≤ 1) =
1− Φ(1) = 1− 0.84134 = 0.15866
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Converting Normal to Standard Normal (Y → Z )

▶ What if I need P(a ≤ Y ≤ b) where Y ∼ N (µ, σ2)?

P(a ≤ Y ≤ b) = P(Y ≤ b)− P(Y ≤ a) probability = area under the PDF

= P
(
Y−µ
σ ≤ b−µ

σ

)
− P

(
Y−µ
σ ≤ a−µ

σ

)
standardization won’t change the inequality

= P
(
Z ≤ b−µ

σ

)
− P

(
Z ≤ a−µ

σ

)
def’n of standard normal r.v.

= Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
standard normal CDF

▶ This tells us that to compute P(a ≤ Y ≤ b), we need to transform Y
to Z and find the z-scores of a and b (or the equivalent numbers of a
and b in the standard normal graph).
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Converting Normal to Standard Normal (Y → Z )

Example
Let Y ∼ N (3, 16), what is P(2 < Y < 5)?

P(2 < Y < 5) = P

(
2− 3√

16
≤ Y − 3√

16
≤ 5− 3√

16

)
standardize Y

= P

(
−1

4
≤ Z ≤ 2

4

)
= Φ

(
1

2

)
− Φ

(
−1

4

)
= 0.69146− 0.40129 = 0.29017.
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Questions?
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Homework Exercises: 4.61, 4.71, 4.73, 4.77, 4.81
Solutions will be discussed this Friday by the TA.
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