STAT 3375Q: Introduction to Mathematical Statistics I

Lecture 10: Special Continuous Distributions: Uniform, Normal (Gaussian)

Mary Lai Salvaña, Ph.D.

Department of Statistics University of Connecticut

February 26, 2024

Outline

1 [Previously...](#page-2-0)

- ▶ [Continuous Random Variables](#page-3-0)
- ▶ [Expected Value of Continuous Random Variables](#page-4-0)
- ▶ [Variance of Continuous Random Variables](#page-5-0)

2 [Uniform Distribution](#page-6-0)

- **3** [Normal \(Gaussian\) Distribution](#page-20-0)
- **4** [Standard Normal Distribution](#page-35-0)

Previously...

Continuous Random Variables

 \triangleright Cumulative Distribution Function (CDF) of Y:

$$
F(y)=P(Y\leq y), \quad -\infty
$$

 \triangleright Probability Density Function (PDF) of Y:

$$
f(y) = \frac{dF(y)}{dy} = F'(y).
$$

 \triangleright PDF to CDF:

$$
F(y)=\int_{-\infty}^{y}f(t)dt.
$$

 \triangleright Probability that Y falls in the interval [a, b] is ▶ Using the PDF:

$$
P(a \le Y \le b) = \int_a^b f(y) dy
$$

Using the CDF:

$$
P(a \le Y \le b) = F(b) - F(a)
$$

Expected Value of Continuous Random Variables

Expected value of Y: is a measure of central tendency

$$
\mu = E(Y) = \int_{-\infty}^{\infty} yf(y)dy
$$

Expected value of functions of Y: Let $g(Y)$ be a real-valued function of Y .

$$
E\{g(Y)\}=\int_{-\infty}^{\infty}g(y)f(y)dy
$$

- Expected value of a constant: Let c be a constant. Then $E(c) = c$.
- Expected value of a scaled Y: Let $g(Y)$ be a function of Y, and c be a constant.

$$
E\{cg(Y)\}=cE\{g(Y)\}
$$

 \triangleright Expected value of a sum of random variables: Let $g_1(Y), g_2(Y), \ldots, g_k(Y)$ be k functions of Y.

 $E\{g_1(Y) + g_2(Y) + \ldots + g_k(Y)\} = E\{g_1(Y)\} + E\{g_2(Y)\} + \ldots + E\{g_k(Y)\}$

Variance of Continuous Random Variables

 \triangleright Variance of Y: is a measure of the dispersion or scatter of the values of the random variable about the mean μ .

$$
\sigma^2 = V(Y) = E\{(Y - \mu)^2\}
$$

 \triangleright More useful formula to compute the variance:

$$
\sigma^2 = V(Y) = E(Y^2) - \mu^2
$$

Note: The formula above can also be written as $\sigma^2 = V(Y) = E(Y^2) - \{E(Y)\}^2$. \triangleright Standard deviation of Y:

$$
\sigma=\sqrt{V(Y)}
$$

Definition 3.7: Uniform Distribution

If $\theta_1 < \theta_2$, a random variable Y is said to have a continuous uniform probability distribution on the interval (θ_1, θ_2) if and only if the density function of Y is

$$
f(y) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \leq y \leq \theta_2, \\ 0, & \text{elsewhere.} \end{cases}
$$

▶ Notation: $Y \sim U(\theta_1, \theta_2)$, read as: "Y is a uniform random variable on the interval (θ_1, θ_2) ."

$$
\text{CDF: } F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t) dt = \begin{cases} 0, & y < \theta_1 \\ \frac{y - \theta_1}{\theta_2 - \theta_1}, & \theta_1 \le y \le \theta_2 \\ 1, & y > \theta_2. \end{cases}
$$

Usage:

Random number generator: As starting point for generating values from more complicated distributions...

Usage:

Procedural Generation: Introducing randomness into computer gaming algorithms to produce unpredictable or unique contents...

Source:<https://www.thegamer.com/best-procedurally-generated-games-minecraft>

Usage:

Randomized Control Trial: randomly assigning participants to either an experimental group or a control group to measure the effectiveness of an intervention or treatment....

Source:<https://www.simplypsychology.org/randomized-controlled-trial.html>

Usage:

Data Privacy: Adding or multiplying a random number to confidential quantitative attributes

Source: [https://medium.com/@ms](https://medium.com/@ms_somanna/guide-to-adding-noise-to-your-data-using-python-and-numpy-c8be815df524)_somanna/

[guide-to-adding-noise-to-your-data-using-python-and-numpy-c8be815df524](https://medium.com/@ms_somanna/guide-to-adding-noise-to-your-data-using-python-and-numpy-c8be815df524)

Theorem 4.6

If $\theta_1 < \theta_2$ and Y is a random variable uniformly distributed on the interval (θ_1, θ_2) , then

$$
\mu = E(Y) = \frac{\theta_1 + \theta_2}{2}
$$
 and $\sigma^2 = V(Y) = \frac{(\theta_2 - \theta_1)^2}{12}$.

Proof:

$$
E(Y) = \int_{-\infty}^{\infty} y f(y) dy
$$

\n
$$
= \int_{\theta_1}^{\theta_2} y \left(\frac{1}{\theta_2 - \theta_1} \right) dy
$$

\n
$$
= \left(\frac{1}{\theta_2 - \theta_1} \right) \frac{y^2}{2} \Big|_{\theta_1}^{\theta_2}
$$

\n
$$
= \frac{\theta_2^2 - \theta_1^2}{2(\theta_2 - \theta_1)}
$$

\n
$$
= \frac{\theta_2^2 - \theta_1^2}{2(\theta_2 - \theta_1)}
$$

\n
$$
= \frac{\theta_2 + \theta_1}{2(\theta_2 - \theta_1)}
$$

\n
$$
= \frac{\theta_2 + \theta_1}{2}.
$$

\ndiff. of two squares

(cont'd next slide...)

Proof:

$$
E(Y^{2}) = \int_{-\infty}^{\infty} y^{2} f(y) dy
$$
 def'n of expected value
\n
$$
= \int_{\theta_{1}}^{\theta_{2}} y^{2} \left(\frac{1}{\theta_{2} - \theta_{1}}\right) dy
$$
 $f(y) = \begin{cases} \frac{1}{\theta_{2} - \theta_{1}}, & \theta_{1} \leq y \leq \theta_{2}, \\ 0, & \text{elsewhere} \end{cases}$
\n
$$
= \left(\frac{1}{\theta_{2} - \theta_{1}}\right) \frac{y^{3}}{3} \Big|_{\theta_{1}}^{\theta_{2}}
$$

\n
$$
= \frac{\theta_{2}^{3} - \theta_{1}^{3}}{3(\theta_{2} - \theta_{1})}
$$

\n
$$
= \frac{(\theta_{2} - \theta_{1})(\theta_{2}^{2} + \theta_{2}\theta_{1} + \theta_{1}^{2})}{3(\theta_{2} - \theta_{1})}
$$
diff. of two cubes
\n
$$
= \frac{\theta_{2}^{2} + \theta_{2}\theta_{1} + \theta_{1}^{2}}{3}.
$$

$$
\begin{array}{l} V(Y)=E(Y^2)-\{E(Y)\}^2\\ =\frac{\theta_2^2+\theta_2\theta_1+\theta_1^2}{3}-\big(\frac{\theta_2+\theta_1}{2}\big)^2\\ =\frac{\theta_2^2+\theta_2\theta_1+\theta_1^2}{3}-\frac{\theta_2^2+2\theta_2\theta_1+\theta_1^2}{2}\\ =\frac{4(\theta_2^2+\theta_2\theta_1+\theta_1^2)-3(\theta_2^2+2\theta_2\theta_1+\theta_1^2)}{12}\\ =\frac{4\theta_2^2+4\theta_2\theta_1+4\theta_1^2-3\theta_2^2-6\theta_2\theta_1-3\theta_1^2)}{12}\\ =\frac{\theta_2^2-2\theta_2\theta_1+\theta_1^2}{12}\\ =\frac{(\theta_2-\theta_1)^2}{12}. \end{array}
$$

def'n of variance

Example 1:

A continuous random variable X is uniformly distributed over the interval $[b, 4b]$ where b is a constant.

 \bullet What is $E(X)$?

Solution: $E(X) = \frac{b+4b}{2} = \frac{5b}{2}$ **2D** Theorem 4.6: If $X \sim U(\theta_1, \theta_2)$, then $E(X) = \frac{\theta_1 + \theta_2}{2}$.

Example 1:

A continuous random variable X is uniformly distributed over the interval $[b, 4b]$ where b is a constant.

Show that
$$
V(X) = \frac{3b^2}{4}
$$
?

Solution: $V(X) = \frac{(4b-b)^2}{12} = \frac{(3b)^2}{12} = \frac{9b^2}{12} = \frac{3b^2}{4}$ $\frac{b^2}{4}$ Theorem 4.6: If $X \sim U(\theta_1, \theta_2)$, then $V(X) = \frac{(\theta_2 - \theta_1)^2}{12}$.

Example 1:

A continuous random variable X is uniformly distributed over the interval $[b, 4b]$ where b is a constant.

 \bullet Find $V(3-2X)$.

Solution:

 $V(3-2X) = (-2)^2 V(X) = (4) \frac{3b^2}{4} = 3b^2$. Properties of variance and $V(X) = \frac{3b^2}{4}$ from b).

Example 2:

The continuous random variable X is uniformly distributed over the interval $[-4, 6]$.

a Find $P(X \le 2.4)$.

Solution:

$$
P(X \le 2.4) = \int_{-\infty}^{2.4} f(x) dx
$$
 probability = area under the curve
= $\int_{-4}^{2.4} \frac{1}{6-(-4)} dx$ PDF of uniform: $f(x) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \le x \le \theta_2, \\ 0, & \text{elsewhere} \end{cases}$
= $\frac{1}{10}x\Big|_{-4}^{2.4} = \frac{1}{10}(2.4 - (-4)) = 0.64.$

Example 2:

The continuous random variable X is uniformly distributed over the interval $[-4, 6]$.

 \bullet The continuous random variable Y is uniformly distributed over the interval $[a, 4a]$. Find the value of a such that $P(X \leq \frac{8}{3})$ $(\frac{8}{3}) = P(Y \leq \frac{8}{3})$ $\frac{8}{3}$.

Solution:

$$
P(X \leq \frac{8}{3}) = \int_{-\infty}^{\frac{8}{3}} f(x)dx \quad \text{probability = area under the curve}
$$

\n
$$
= \int_{-4}^{\frac{8}{3}} \frac{1}{6-(-4)} dx \quad \text{PDF of uniform: } f(x) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \leq x \leq \theta_2, \\ 0, & \text{elsewhere} \end{cases}
$$

\n
$$
= \frac{1}{10}x \Big|_{-4}^{\frac{8}{3}} = \frac{1}{10} \Big(\frac{8}{3} - (-4) \Big) = \frac{1}{10} \Big(\frac{20}{3} \Big) = \frac{2}{3}.
$$

\n
$$
P(Y \leq \frac{8}{3}) = \int_{-\infty}^{\frac{8}{3}} f(y)dy \quad \text{probability = area under the curve}
$$

\n
$$
= \int_{a}^{\frac{8}{3}} \frac{1}{4a-a} dy \quad \text{PDF of uniform: } f(y) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \leq y \leq \theta_2, \\ 0, & \text{elsewhere} \end{cases}
$$

\n
$$
= \frac{1}{3a} y \Big|_{a}^{\frac{8}{3}} = \frac{1}{3a} \Big(\frac{8}{3} - a \Big) = \frac{8}{9a} - \frac{1}{3}.
$$

\n
$$
\Rightarrow \frac{2}{3} = \frac{8}{9a} - \frac{1}{3} \Rightarrow a = \frac{8}{9}.
$$

Normal (Gaussian) Distribution

Gaussian Distribution

Normal Curve

- \triangleright The normal curve is perhaps the most important probability graph in all of statistics.
	- ▶ bell-shaped curve
	- high in the middle (mean, μ)
	- ▶ gradually tails off in each direction
- \triangleright More values at the center of the distribution and few in the tails

Gaussian Distribution: History

Abraham de Moivre

Source: Cambridge University Library

 \blacktriangleright He was solving a gambling problem:

$$
\begin{aligned}\n\blacktriangleright \quad p(y) &= \binom{n}{y} p^y (1-p)^{n-y} \\
\blacktriangleright \quad p(60) + p(61) + p(62) + \dots \\
\blacktriangleright \quad \text{VERY} \text{ TEDIOUS} &::\n\end{aligned}
$$

 \blacktriangleright He noticed that as *n* increases, the shape of the binomial distribution approaches a smooth curve.

- \blacktriangleright He found a mathematical expression for this curve.
- ▶ So instead of having to add lots of individual numbers you can just find the area under the curve...

Gaussian Distribution: History

Carl Friedrich Gauss

Portrait by Christian Albrecht Jensen, 1840

 \blacktriangleright He developed the Gaussian PDF:

$$
f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}, -\infty \le y \le \infty
$$

- expected value: μ
- variance: σ^2

▶ Approximating distribution to:

- ▶ binomial
- ▶ Poisson
- $\blacktriangleright \chi^2$
- ▶ Student-t

German 10-Deutsche Mark Banknote (1993; discontinued)

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q [Introduction to Mathematical Statistics I Lec 10](#page-0-0) 24 / 49

Source: [https://uc-r.github.io/assumptions](https://uc-r.github.io/assumptions_normality)_normality

Human Height

Source:

[https://www.ucd.ie/ecomodel/Resources/Sheet4](https://www.ucd.ie/ecomodel/Resources/Sheet4_data_distributions_WebVersion.html) data distributions WebVersion.html

Housefly Wingspan

Housefly Wing Lengths

Source:<https://seattlecentral.edu/qelp/sets/057/057.html>

Sports

Sources: <https://rpubs.com/Thom9567/1012507> <https://priorprobability.com/2014/12/06/nba-data-set/>

Gym

Source: [https://www.reddit.com/r/mildlyinteresting/comments/9omj54/](https://www.reddit.com/r/mildlyinteresting/comments/9omj54/gaussian_distribution_of_usage_marks_at_my_local) gaussian [distribution](https://www.reddit.com/r/mildlyinteresting/comments/9omj54/gaussian_distribution_of_usage_marks_at_my_local) of usage marks at my local

Exam Scores

Source: [https://medium.com/@akashsri306/](https://medium.com/@akashsri306/the-gaussian-distribution-machine-learnings-secret-weapon-4f37f590718d)

[the-gaussian-distribution-machine-learnings-secret-weapon-4f37f590718d](https://medium.com/@akashsri306/the-gaussian-distribution-machine-learnings-secret-weapon-4f37f590718d)

Even when they are NOT normal... we make them normal!

Gaussian Distribution

Definition 4.8: Gaussian Distribution

A random variable Y is said to have a Gaussian probability distribution if and only if, for $\sigma > 0$ and $-\infty < \mu < \infty$, the density function of Y is

$$
f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \quad -\infty \le y \le \infty
$$

Theorem 4.7

If Y is a normally distributed random variable with parameters μ and σ , then

$$
E(Y) = \mu
$$
 and $V(Y) = \sigma^2$.

- ▶ Notation: $Y \sim \mathcal{N}(\mu, \sigma^2)$, read as: "Y is normally distributed with mean μ and variance σ^2 ."
- \triangleright The parameter μ locates the center or peak of the distribution.
- \triangleright The parameter σ measures the spread of the distribution.

$$
\triangleright \text{ symmetric at } y = \mu
$$

Gaussian Distribution: A Closer Look at the PDF

- \triangleright The center of the curve is determined by μ .
- \triangleright The width of the curve is determined by σ .
	- The larger σ is, the wider or flatter the curve will be.
	- \triangleright The smaller σ is, the narrower or taller the curve will be.
- \triangleright The units in the horizontal axis are given in standard deviations.
- \blacktriangleright The area under the curve to the right of the mean is 0.5.
- \triangleright The area under the curve to the left of the mean is 0.5.

Gaussian Distribution: The Empirical Rule

Normal Curve

$$
\begin{aligned}\n&\Rightarrow P(\mu - \sigma \le Y \le \mu + \sigma) = 0.6827 \\
&\Rightarrow P(\mu - 2\sigma \le Y \le \mu + 2\sigma) = 0.9545 \\
&\Rightarrow P(\mu - 3\sigma \le Y \le \mu + 3\sigma) = 0.9973\n\end{aligned}
$$

Gaussian Distribution: Areas under the PDF

\n- \n
$$
\text{PDF: } f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \quad -\infty \leq y \leq \infty
$$
\n
\n- \n
$$
\text{CDF: } F(y) = P(Y \leq y) = \int_{-\infty}^{y} f(t) dt = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt
$$
\n
\n- \n
$$
\text{P}(a \leq Y \leq b) = \int_{a}^{b} f(y) dy = \int_{a}^{b} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy \text{ (Using the PDF)}
$$
\n
\n- \n
$$
\text{PR}(a \leq Y \leq b) = F(b) - F(a) \text{ (Using the CDF)}
$$
\n
\n

Unfortunately, closed-form expressions for these integrals do not exist. These need to be solved using numerical integration techniques.

If these integrals cannot be solved, how do we compute the probabilties or areas under the normal curve?

Answer: We use the standard normal table:

- \triangleright also known as the Z-table
- ▶ provides the area under the curve to the left of a z-score (values in the horizontal axis of a standard normal curve)

Standard Normal Distribution

Standard Normal Distribution

▶ Normal (Gaussian) PDF: $f(y) = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2\pi\sigma^2}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$ $\overline{2\sigma^2}$, $-\infty \leq y \leq \infty$.

► Let $Z = \frac{Y-\mu}{\sigma}$ $\frac{-\mu}{\sigma}$. What is the distribution of this new random variable?

$$
F_Z(z) = P(Z \le z) = P\left(\frac{Y - \mu}{\sigma} \le z\right)
$$

\n
$$
= P(Y \le \sigma z + \mu)
$$

\n
$$
= F_Y(\sigma z + \mu).
$$

\n
$$
f_Z(z) = \frac{d}{dz}F_Z(z) = \frac{d}{dz}F_Y(\sigma z + \mu) \text{ def'n of PDF}
$$

\n
$$
= \sigma f_Y(\sigma z + \mu) \text{ f(y) = F'(y) and chain rule}
$$

\n
$$
= \sigma \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(\sigma z + \mu - \mu)^2}{2\sigma^2}}
$$

\n
$$
= \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}.
$$
 (This is the standard normal (Gaussian) PDF)

This is known as the standard normal distribution, a special normal (Gaussian) distribution where $\mu = 0$ and $\sigma = 1$.

Standard Normal Distribution

▶ Turns out, $Z = \frac{Y-\mu}{\sigma}$ $\frac{-\mu}{\sigma}$ is a standard normal random variable. ▶ Notation: $Z \sim \mathcal{N}(0, 1)$ ▶ PDF: $\phi(z) = f(z) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}e^{-\frac{z^2}{2}}, -\infty \leq z \leq \infty$ ► CDF: $\Phi(z) = F(z) = P(Z \le z) = \int_{-\infty}^{z} \phi(t) dt = \int_{-\infty}^{z} \frac{1}{\sqrt{2}}$ $rac{1}{2\pi}e^{-\frac{t^2}{2}}dt$ ▶ $P(a \le Z \le b) = \int_a^b \phi(z) dz = \int_a^b \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}e^{-\frac{z^2}{2}}dz$ (Using the PDF) OR \triangleright $P(a \le Z \le b) = \Phi(b) - \Phi(a)$ (Using the CDF)

Again, unfortunately, we cannot simplify or solve these integrals.

However, FORTUNATELY, the value of the CDF $\Phi(z)$ has already been precomputed for any number z.

You can find these values in a standard normal table or Z-table.

You need to know how to use the Z-table for the exams!

Standard Normal Distribution: A Closer Look at the PDF

- \triangleright A standard normal distribution always has a mean of zero.
- The unit in the horizontal axis is in standard deviations.
- \triangleright The z-score is a value which the standard normal random variable Z can take.
- \triangleright The z-score value $= -1$ is:
	- \blacktriangleright 1 standard deviation away from the mean and
	- \blacktriangleright falls below the mean since the sign is negative.
- \triangleright The z-score value = 2 is:
	- ▶ 2 standard deviations away from the mean and
	- \triangleright found above the mean since the sign is positive.

- \triangleright Row headings: z-score up to the first decimal place.
- ▶ Column headings: second decimal place of the z-score.
- \triangleright Cells: areas under the standard normal curve to the left of every z-score.

 \triangleright Row headings: z-score up to the first decimal place.

- ▶ Column headings: second decimal place of the z-score.
- \triangleright Cells: areas under the standard normal curve to the left of every z-score.

What is $\Phi(-2.23)$ or $P(Z \le -2.23)$?

Answer: $0.01287 = 1.287\%$

What is $P(-1 \le Z \le 1)$? Answer: $P(-1 \leq Z \leq 1) = P(Z \leq 1) - P(Z \leq -1)$ probability = area under the curve $= \Phi(1) - \Phi(-1)$ Standard normal CDF $= 0.84134 - 0.15866 = 0.68268$

TDIDITION: Table Values Depresent ADEA to the LEET of the Z seems

What is $P(-2 < Z < 2)$? Answer: $P(-2 \le Z \le 2) = P(Z \le 2) - P(Z \le -2)$ probability = area under the curve $= \Phi(2) - \Phi(-2)$ Standard normal CDF $= 0.97725 - 0.02275 = 0.9545$

TDIDITION: Table Values Depresent ADFA to the LEET of the Z seems

What is $P(-3 \le Z \le 3)$? Answer: $P(-3 \le Z \le 3) = P(Z \le 3) - P(Z \le -3)$ probability = area under the curve $= \Phi(3) - \Phi(-3)$ Standard normal CDF $= 0.99865 - 0.00135 = 0.9973$

CEANDARD MODALLY DISTRIBUTION, Takh Value Bennesot (DEA to the UET of the 7 news

Standard Normal Curve

What is $P(Z > 1)$? Answer: $P(Z > 1) = 1 - P(Z \le 1) =$ $1 - \Phi(1) = 1 - 0.84134 = 0.15866$

Converting Normal to Standard Normal $(Y \rightarrow Z)$

▶ What if I need $P(a leq Y ≤ b)$ where $Y \sim \mathcal{N}(\mu, \sigma^2)?$

$$
P(a \le Y \le b) = P(Y \le b) - P(Y \le a)
$$
probability = area under the PDF
= $P\left(\frac{Y-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right) - P\left(\frac{Y-\mu}{\sigma} \le \frac{a-\mu}{\sigma}\right)$ standardization won't change the inequality
= $P\left(Z \le \frac{b-\mu}{\sigma}\right) - P\left(Z \le \frac{a-\mu}{\sigma}\right)$ def'n of standard normal rv.
= $\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ standard normal CDF

▶ This tells us that to compute $P(a \le Y \le b)$, we need to transform Y to Z and find the z-scores of a and b (or the equivalent numbers of a and *b* in the standard normal graph).

Converting Normal to Standard Normal ($Y \rightarrow Z$)

Example

Let $Y \sim \mathcal{N}(3, 16)$, what is $P(2 < Y < 5)$?

$$
P(2 < Y < 5) = P\left(\frac{2-3}{\sqrt{16}} \le \frac{Y-3}{\sqrt{16}} \le \frac{5-3}{\sqrt{16}}\right) \text{ standardize } Y
$$

= $P\left(-\frac{1}{4} \le Z \le \frac{2}{4}\right)$
= $\Phi\left(\frac{1}{2}\right) - \Phi\left(-\frac{1}{4}\right)$
= 0.69146 - 0.40129 = 0.29017.

Standard Normal Curve Normal Curve ž. $\frac{4}{10}$ ģ $\widehat{\mathfrak{a}}$ $Area = 0.21$ $\frac{2}{9}$ $\geqslant 2$ EM. $\overline{\mathcal{S}}$ Area=0.21 $_{\rm 3}^{\rm o}$ -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -S -3 -2 -1 0 $1 \t2 \t3 \t4 \t5$ 6 θ 10 2 or z-score

Questions?

Homework Exercises: 4.61, 4.71, 4.73, 4.77, 4.81 Solutions will be discussed this Friday by the TA.