STAT 3375Q: Introduction to Mathematical Statistics I Lecture 11: Special Continuous Distributions: Normal (Gaussian)

Mary Lai Salvaña, Ph.D.

Department of Statistics University of Connecticut

February 28, 2024

Outline

1 [Quiz 3 Review Exercises Solutions](#page-2-0)

² [Previously...](#page-16-0)

- [Uniform Distribution](#page-17-0)
- ▶ [Normal \(Gaussian\) Distribution](#page-18-0)
- ▶ [Standard Normal Distribution](#page-19-0)

Quiz 3 Review Exercises Solutions

Let X have a PDF defined by:
$$
f(x) = \begin{cases} cxe^{-x}, & x \ge 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

 \bullet Find the constant $c.$ Solution:

$$
1 = \int_{-\infty}^{\infty} f(x)dx \quad \text{def'n of PDF}
$$
\n
$$
\Rightarrow 1 = c \left(\int_{-\infty}^{2} 0dx + \int_{2}^{\infty} xe^{-x}dx \right) \quad \text{substitute the form of PDF above}
$$
\n
$$
\Rightarrow 1 = c \int_{2}^{\infty} xe^{-x}dx \quad \text{need to do integration by parts: } \int_{a}^{b} udv = uv|_{a}^{b} - \int_{a}^{b} vdu
$$
\n
$$
u = x \quad \Rightarrow du = dx
$$
\n
$$
dv = e^{-x}dx \quad \Rightarrow v = \int dv = \int e^{-x}dx = -e^{-x}
$$
\n
$$
\Rightarrow \int_{2}^{\infty} xe^{-x}dx = -xe^{-x}|_{2}^{\infty} - \int_{2}^{\infty} (-e^{-x})dx
$$

(cont'd next slide)

 \int_{2}^{π} $(-e^{-x})dx$

Let X have a PDF defined by:
$$
f(x) = \begin{cases} cxe^{-x}, & x \ge 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

a Find the constant *c*. Solution:

$$
\Rightarrow 1 = c \left(-xe^{-x} \Big|_2^{\infty} - \int_2^{\infty} (-e^{-x}) dx \right) \text{ after integrating by parts}
$$

\n
$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) - (-2e^{-2}) + \int_2^{\infty} e^{-x} dx \right\} \text{ evaluating bounds with } \infty
$$

\n
$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) + 2e^{-2} - e^{-x} \Big|_2^{\infty} \right\} \text{ integrating the exponential}
$$

\n
$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) + 2e^{-2} + \lim_{x \to \infty} (-e^{-x}) - (-e^{-2}) \right\} \text{ evaluating bounds with } \infty
$$

\n
$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) + 2e^{-2} + \lim_{x \to \infty} (-e^{-x}) + e^{-2} \right\}
$$

\n
$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) + 2e^{-2} + \lim_{x \to \infty} \left(-\frac{1}{e^{x}} \right) + e^{-2} \right\}
$$

\n
$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) + 2e^{-2} + 0 + e^{-2} \right\}
$$

\n
$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) + 2e^{-2} + 0 + e^{-2} \right\}
$$

\n(cont'd next slide)

Let X have a PDF defined by:
$$
f(x) = \begin{cases} cxe^{-x}, & x \ge 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

 \bullet Find the constant $c.$ Solution:

$$
\Rightarrow 1 = c \left\{ \lim_{x \to \infty} (-xe^{-x}) + 2e^{-2} + e^{-2} \right\}
$$

$$
\lim_{x\to\infty}(-xe^{-x})=\lim_{x\to\infty}-\frac{x}{e^x}=\frac{\infty}{\infty}\quad\text{(indeterminate form)}
$$

Apply L'Hospital's Rule: differentiate the numerator, differentiate the denominator, then take the limit.

$$
\Rightarrow \lim_{x \to \infty} (-xe^{-x}) = \lim_{x \to \infty} -\frac{x}{e^x} = \lim_{x \to \infty} -\frac{1}{e^x} = 0.
$$

$$
\Rightarrow 1 = c(2e^{-2} + e^{-2})
$$

$$
\Rightarrow 1 = c3e^{-2}
$$

$$
\Rightarrow c = \frac{e^{2}}{3}.
$$

Let X have a PDF defined by: $f(x) = \begin{cases} cxe^{-x}, & x \ge 2, \\ 0 & x \le 3. \end{cases}$ 0, elsewhere. **b** Find $P(1 \leq X \leq 3)$. Solution: $P(1 \le X \le 3)$ = $\int_1^3 f(x)dx$ probability = area under PDF $= c \left(\int_0^2$ $\int_{1}^{2} 0 dx + \int_{2}^{3}$ $\int_{2}^{3} xe^{-x} dx$ substitute the form of PDF above $=\frac{e^2}{2}$ 3 \int^3 $\int_{2} x e^{-x} dx$ substitute value of c from a) $=\frac{e^2}{2}$ 3 $\left(-xe^{-x}\Big|_2^3\right)$ $\frac{3}{2} - \int_{2}^{3}$ $\int_{2}^{3}(-e^{-x})dx\bigg)$ integration by parts $=\frac{e^2}{2}$ 3 $\left(-3e^{-3}+2e^{-2}-e^{-x}\right)_2^3$ $\binom{3}{2}$ $=\frac{e^2}{2}$ 3 $\left(-3e^{-3}+2e^{-2}-e^{-3}+e^{-2}\right)$ $=\frac{e^2}{2}$ 3 $\left(-4e^{-3}+3e^{-2}\right)=-\frac{4}{3}$ $\frac{4}{3}e^{-1}+1=0.51.$

Let X denote a continuous random variable with PDF

$$
f(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4 \\ 0, & \text{otherwise.} \end{cases}
$$

Define Y to be the integer that is closest X .

 \bullet Explain why Y is a discrete random variable and give possible values for Y .

Solution:

Possible values of Y are 0, 1, 2, 3, and 4. Thus, Y is discrete.

Let X denote a continuous random variable with PDF

$$
f(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4\\ 0, & \text{otherwise.} \end{cases}
$$

Define Y to be the integer that is closest X .

6 Compute the PMF of Y.

Solution:

To get the PMF, we need to compute the probabilities for each possible values of Y . Approach 1: (Integrating the PDF of X)

$$
P(Y = 0) = P(0 \le X < 0.5) = \int_0^{0.5} f(x)dx = \frac{x^2}{16} \Big|_0^{0.5} = \frac{1}{64}.
$$
\n
$$
P(Y = 1) = P(0.5 \le X < 1.5) = \int_{0.5}^{1.5} f(x)dx = \frac{x^2}{16} \Big|_{0.5}^{1.5} = \frac{9}{64} - \frac{1}{64} = \frac{1}{8}.
$$
\n
$$
P(Y = 2) = P(1.5 \le X < 2.5) = \int_{1.5}^{2.5} f(x)dx = \frac{x^2}{16} \Big|_{1.5}^{2.5} = \frac{25}{64} - \frac{9}{64} = \frac{1}{4}.
$$
\n
$$
P(Y = 3) = P(2.5 \le X < 3.5) = \int_{2.5}^{3.5} f(x)dx = \frac{x^2}{16} \Big|_{2.5}^{3.5} = \frac{49}{64} - \frac{25}{64} = \frac{24}{64} = \frac{3}{8}.
$$
\n(cont'd next slide)

Let X denote a continuous random variable with PDF

$$
f(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4\\ 0, & \text{otherwise.} \end{cases}
$$

Define Y to be the integer that is closest X .

6 Compute the PMF of Y. Solution:

$$
P(Y = 4) = P(3.5 \le X < 4) = \int_{3.5}^{4} f(x)dx = \frac{x^2}{16} \Big|_{3.5}^{4} = 1 - \frac{49}{64} = \frac{15}{64}.
$$
\nTherefore, the PMF of Y is:

\n
$$
p(y) = \begin{cases}\n\frac{1}{64}, & y = 0 \\
\frac{1}{8}, & y = 1 \\
\frac{1}{4}, & y = 2 \\
\frac{3}{8}, & y = 3 \\
\frac{15}{64}, & y = 4 \\
0, & \text{elsewhere.}\n\end{cases}
$$

П

Let X denote a continuous random variable with PDF

$$
f(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4\\ 0, & \text{otherwise.} \end{cases}
$$

Define Y to be the integer that is closest X .

C Compute the PMF of Y.

Solution:

Approach 2: (Finding then evaluating the CDF of X)

When $0 < x < 4$.

$$
P(Y = 0) = P(0 \le X < 0.5) = F(0.5) - F(0).
$$
\n
$$
F(x) = \int_0^x \frac{t}{8} dt \qquad P(Y = 1) = P(0.5 \le X < 1.5) = F(1.5) - F(0.5).
$$
\n
$$
P(Y = 2) = P(1.5 \le X < 2.5) = F(2.5) - F(1.5).
$$
\n
$$
= \frac{t^2}{16} \Big|_0^x \qquad P(Y = 3) = P(2.5 \le X < 3.5) = F(3.5) - F(2.5).
$$
\n
$$
= \frac{x^2}{16}.
$$
\n
$$
P(Y = 4) = P(3.5 \le X < 4) = F(4) - F(3.5).
$$

Divide a stick into two parts. Find the probability that the larger part of the stick is at least three times the shorter.

Solution:

- Assume the stick is the interval $(0, 1)$.
- Exect X be a point in the interval $(0, 1)$ where we break the stick.
- ► Since every point on the stick has an equal chance of getting picked, $X \sim U(0, 1)$.
- \triangleright Two things can happen:

Event 2: X is the longer piece.

Event 1: X is the shorter piece.

$$
\Vdash X \leq 1-X
$$

$$
\quad \blacktriangleright \;\; \Rightarrow \; X > \tfrac{1}{2}.
$$

 \triangleright ⇒ $X \leq \frac{1}{2}$. $2 \times 2 \geq 2$.
We want to find the probability that the longer segment is at least three times the shorter: $P(1 - X > 3X|E_1)P(E_1) + P\{X > 3(1 - X)|E_2\}P(E_2)$.

(cont'd next slide)

Divide a stick into two parts. Find the probability that the larger part of the stick is at least three times the shorter.

Divide a stick into two parts. Find the probability that the larger part of the stick is at least three times the shorter.

Event 1: X is the shorter piece. Event 2: X is the longer piece.

 \blacktriangleright $P(E_1) = \frac{1}{2}$. \blacktriangleright $P(E_2) = \frac{1}{2}$. ► $P(1 - X > 3X|E_1) = \frac{1}{2}$. ► $P\{X > 3(1-X)|E_2\} = \frac{1}{2}$.

Hence,

$$
P(1-X > 3X|E_1)P(E_1) + P\{X > 3(1-X)|E_2\}P(E_2) = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{2}.
$$

Suppose we have the following function:

$$
f(y) = \begin{cases} c\left(\frac{1}{2} - y^2\right), & -1 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}
$$

Is this a valid PDF? If not, is there a c for which this becomes a valid PDF?

Solution:

- \triangleright When $c = 0$, then $f(y)$ does not integrate to 1.
- ▶ When $c \neq 0$, there is an interval in $-1 \le y \le 1$ over which $f(y)$ is negative.

 \blacktriangleright Therefore, the $f(y)$ above will NOT make a valid PDF.

П

Derive the PDF of $|X|$ where $X \sim U(-1, 1)$. Solution:

- **►** Since X is uniform on the interval $(-1, 1)$, its PDF is: $f(x) = \begin{cases} \frac{1}{2}, & -1 \leq x \leq 1, \\ 0, & -1 \leq x \leq 1. \end{cases}$ 0, elsewhere.
- \blacktriangleright The PDF of $|X|$ can be derived from its CDF, $F_{|X|}(x)$.
- ▶ We first need to find the CDF, $F_{|X|}(x)$. The CDF can be derived as follows: For $0 \leq x \leq 1$,
	- $F_{|X|}(x) = P(|X| \leq x)$ def'n of CDF $= P(-x \leq X \leq x)$ absolute value inequality $=\int^x$ $-x$ 1 $\frac{1}{2}$ dt probability = area under the PDF $=$ $\frac{1}{2}$ $\frac{1}{2}t\Big|_{-}^{x}$ $\frac{x}{-x} = \frac{1}{2}$ $\frac{1}{2}(2x) = x.$
- \triangleright We can now get the PDF of $|X|$ from the CDF as follows:

$$
f_{|X|}(x) = \frac{d}{dx} F_{|X|}(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{elsewhere.} \end{cases}
$$

Previously...

Uniform Distribution

- ▶ Notation: $Y \sim U(\theta_1, \theta_2)$
- **Parameters:** θ_1 (minimum), θ_2 (maximum)

► PDF:
$$
f(y) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \leq y \leq \theta_2, \\ 0, & \text{elsewhere} \end{cases}
$$

\n► CDF: $F(y) = \begin{cases} 0, & y < \theta_1 \\ \frac{y - \theta_1}{\theta_2 - \theta_1}, & \theta_1 \leq y \leq \theta_2 \\ 1, & y > \theta_2. \end{cases}$

 \triangleright Mean or Expected Value: $\frac{\theta_1+\theta_2}{2}$

$$
\triangleright \text{ Variance: } \frac{(\theta_2 - \theta_1)^2}{12}
$$

Normal (Gaussian) Distribution

$$
\triangleright \text{ Notation: } Y \sim \mathcal{N}(\mu, \sigma^2)
$$

• Parameters: μ (mean), σ (standard deviation)

$$
\text{PDF: } f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \quad -\infty \leq y \leq \infty
$$

► CDF:
$$
F(y) = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt
$$
 (no explicit form)

- \triangleright Mean or Expected Value: μ
- \triangleright Variance: σ^2
- ▶ Notation: $Z \sim \mathcal{N}(0, 1)$
- **Parameters:** $\mu = 0$ (mean), $\sigma = 1$ (standard deviation)

$$
\triangleright \text{ PDF: } \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad -\infty \leq z \leq \infty
$$

► CDF:
$$
\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt
$$
 (no explicit form)

- ▶ Mean or Expected Value: 0
- ▶ Variance: 1

Computing $P(a \le Z \le b)$, $Z \sim \mathcal{N}(0, 1)$

 \triangleright Row headings: z-score up to the first decimal place.

- ▶ Column headings: second decimal place of the z-score.
- ▶ Cells: areas under the standard normal curve to the left of every z-score.

Example:

$$
P(-1 \le Z \le 1) = \Phi(1) - \Phi(-1) = 0.84134 - 0.15866 = 0.68268
$$

Computing $P(a \le Y \le b)$, $Y \sim \mathcal{N}(\mu, \sigma^2)$

$$
P(a \le Y \le b) = P(Y \le b) - P(Y \le a)
$$
probability = area under the PDF
= $P\left(\frac{Y-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right) - P\left(\frac{Y-\mu}{\sigma} \le \frac{a-\mu}{\sigma}\right)$ standardization won't change the
= $P\left(Z \le \frac{b-\mu}{\sigma}\right) - P\left(Z \le \frac{a-\mu}{\sigma}\right)$ def'n of standard normal rv.
= $\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$. standard normal CDF

standardization won't change the inequality

def'n of standard normal r.v.

. standard normal CDF

Example:

Let $Y \sim \mathcal{N}(3, 16)$, what is $P(2 < Y < 5)$?

$$
P(2 < Y < 5) = P\left(\frac{2-3}{\sqrt{16}} \le \frac{Y-3}{\sqrt{16}} \le \frac{5-3}{\sqrt{16}}\right) \text{ standardize } Y
$$

= $P\left(-\frac{1}{4} \le Z \le \frac{2}{4}\right)$
= $\Phi\left(\frac{1}{2}\right) - \Phi\left(-\frac{1}{4}\right)$ check corresponding values of CDF on the Z-table
= 0.69146 - 0.40129 = 0.29017.

Normal (Gaussian) Distribution (cont'd)

If $Z \sim \mathcal{N}(0, 1)$ with CDF $\Phi(z)$, then **D** $Y = \mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2)$. Proof: Let $F_Y(y)$ be the CDF of Y and $f_Y(y)$ be the PDF of Y. Then, $F_v(v) = P(Y \le v) = P(u + \sigma Z \le v)$ $= P(\sigma Z \leq v - \mu)$ $= P(Z \leq \frac{y - \mu}{\sigma})$ σ \setminus $= F_Z \left(\frac{y - \mu}{\sigma} \right)$ σ . standard normal CDF $f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_Z \left(\frac{y - \mu}{\sigma} \right)$ σ def'n of PDF $=$ $\frac{1}{1}$ $rac{1}{\sigma}$ f_Z $\left(\frac{y-\mu}{\sigma}\right)$ σ $\Bigg\}$ $f(z) = F'(z)$ and chain rule $=$ $\frac{1}{1}$ σ $\frac{1}{\sqrt{2\pi}}e^{-\frac{(\frac{y-\mu}{\sigma})^2}{2}}$ 2 PDF of standard normal $=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}.$ (This is the Gaussian PDF)

Gaussian Distribution: Mean, μ , Controls the Location

 $Y = \mu + Z \sim \mathcal{N}(\mu, 1), \ \mu = -2, 0, 1.$

Normal Curves

Gaussian Distribution: SD, σ , Controls the Width

 $Y = \sigma Z \sim \mathcal{N}(0, \sigma^2), \ \sigma = 1, 0.5, 2.$

Gaussian Distribution: (μ, σ) Shifts & Scales

 $Y = \mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2).$

Normal Curves

If
$$
Z \sim \mathcal{N}(0, 1)
$$
 with CDF $\Phi(z)$, then
\n $\Phi(-z) = 1 - \Phi(z)$ (symmetry)
\nProof:
\n $\Phi(-z) = \frac{P(Z \le z)}{P(Z \le z)} \int_{z}^{-z} \frac{1}{z} dz$

$$
\Phi(-z) = P(Z \leq -z) = \int_{-\infty}^{-z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt \text{ standard normal CDF}
$$

 $=$ $\int^{-\infty}$ $-z$ $\frac{1}{\sqrt{2}}$ 2π $e^{-\frac{t^2}{2}}dt$ change the sign when flipping the bounds of integration

Next, do the change of variables: Let $u = -t \Rightarrow du = -dt$.

$$
= -\int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(-u)^{2}}{2}} (-du)
$$

\n
$$
= \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du
$$

\n
$$
= P(Z \ge z) \text{ probability = area under the curve}
$$

\n
$$
= 1 - P(Z < z) \text{ complement}
$$

\n
$$
= 1 - \Phi(z). \text{ standard normal CDF}
$$

If $Z \sim \mathcal{N}(0, 1)$ with CDF $\Phi(z)$, then $\bigcirc \Phi(-z) = 1 - \Phi(z)$ (symmetry)

If $Z \sim \mathcal{N}(0, 1)$ with CDF $\Phi(z)$, then

$$
\begin{aligned}\n\mathbf{\Theta} \ P(-z < Z < z) &= 2\Phi(z) - 1 \\
\text{Proof:} \\
P(-z < Z < z) &= P(Z \le z) - P(Z \le -z) \\
&= \Phi(z) - \Phi(-z) \quad \text{standard normal CDF} \\
&= \Phi(z) - \{1 - \Phi(z)\} \quad \text{from previous slide: } \Phi(-z) = 1 - \Phi(z) \\
&= \Phi(z) - 1 + \Phi(z) \\
&= 2\Phi(z) - 1.\n\end{aligned}
$$

Example 1:

Suppose X , the grade on a midterm exam, is normally distributed with mean 70 and standard deviation 10. The instructor wants to give 15% of the class an A. What cutoff should the instructor use to determine who gets an A?

Solution:

 \triangleright We need to find z (cutoff "grade" in the std normal distribution) such that

 $\Phi(z)$ = 0.85 85% of the students have grades below z (Eqn 1) OR $1 - \Phi(z) = 0.15$ 15% of the students have grades above z (Eqn 2)

- \blacktriangleright In the Z-table, look for the row and column where you can find the cell value 0.85.
- $▶$ From the Z-table, $Φ(1.04) = 0.85$.
- \blacktriangleright Hence, z in (Eqn 1) should be 1.04.
- \blacktriangleright This means that the cutoff grade in the std normal distribution is $z = 1.04$.

(cont'd next slide)

Example 1:

Suppose X , the grade on a midterm exam, is normally distributed with mean 70 and standard deviation 10. The instructor wants to give 15% of the class an A. What cutoff should the instructor use to determine who gets an A?

Solution: Normal Curve **Standard Normal Curve** 80.0 $\frac{3}{2}$ $\frac{8}{6}$ $\frac{8}{5}$ $\frac{1}{2}$ $\frac{1}{2}$ \overline{z} $_{0.02}^{\circ}$ $Area = 0.15$ $\frac{8}{2}$ $Area = 0.15$ $7 = 1.04$ 70 $\ddot{\rm{o}}$ z or z-score

We still need to compute the "real" cutoff score x . (cont'd next slide)

Example 1:

Suppose X , the grade on a midterm exam, is normally distributed with mean 70 and standard deviation 10. The instructor wants to give 15% of the class an A. What cutoff should the instructor use to determine who gets an A? Massach Property **Provident More of Princip**

- \triangleright To find the cutoff score x, in the original problem, we need to convert $z = 1.04$ back to the original magnitude/scale of the problem.
- ▶ Recall: $Z = \frac{X-\mu}{\sigma}$ and $X = \mu + \sigma Z$
- \triangleright Applying the appropriate transformation, the cutoff score should be: $x = \mu + \sigma(1.04) = 70 + 10(1.04) = 80.4$
- \blacktriangleright This means that to ensure 15% of the students get an A, the cutoff grade for getting an A should be 80.4.

Example 2:

Let X be a Gaussian random variable with mean 5. If $P(X > 9) = 0.2$, approximately what is $V(X)$?

Solution: Let $\sigma^2 = V(X)$. $P(X > 9) = 1 - P(X \leq 9)$ complement $= 1 - P\left(\frac{X-5}{2}\right)$ $\frac{\theta-5}{\sigma} \leq \frac{9-5}{\sigma}$ σ $\bigg\}$ standardize X $= 1 - P \left(Z \leq \frac{4}{\cdot} \right)$ σ def'n of standard normal r.v. $= 1 - \Phi \left(\frac{4}{\pi} \right)$ σ . standard normal CDF

 $▶ \text{ We need } 1 - \Phi\left(\frac{4}{\sigma}\right) = 0.2 \text{ (given)} \Rightarrow \Phi\left(\frac{4}{\sigma}\right) = 0.8$

- \blacktriangleright In the Z-table, look for the row and column where you can find the cell value 0.8.
- $▶$ From the Z-table, $Φ(0.84) ≈ 0.8$.
- ▶ Hence, $\frac{4}{\sigma}$ must be equal to 0.84. $\Rightarrow \frac{4}{\sigma} = 0.84$
- ▶ Therefore, $\sigma = 4.76$ and $V(X) = (4.76)^2 = 22.66$.

П

Example 3:

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ such that $P(X > 20.6) = P(X \leq -18.6) = 0.025?$ What are the values of μ and σ ?

Solution:

$$
P(X > 20.6) = 1 - P(X \le 20.6)
$$

\n
$$
= 1 - P\left(\frac{X - \mu}{\sigma} \le \frac{20.6 - \mu}{\sigma}\right)
$$

\n
$$
= 1 - P\left(Z \le \frac{20.6 - \mu}{\sigma}\right)
$$

\n
$$
= 1 - \Phi\left(\frac{20.6 - \mu}{\sigma}\right)
$$

\n
$$
= 1 - \Phi\left(\frac{20.6 - \mu}{\sigma}\right)
$$

\n
$$
= 1 - \Phi\left(\frac{20.6 - \mu}{\sigma}\right)
$$

\n
$$
= 1 - \Phi\left(\frac{20.6 - \mu}{\sigma}\right)
$$

\n
$$
= 1 - \Phi\left(\frac{20.6 - \mu}{\sigma}\right)
$$

(cont'd next slide)

Example 3:

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ such that $P(X > 20.6) = P(X \leq -18.6) = 0.025?$ What are the values of μ and σ ?

Solution:

$$
P(X \le -18.6) = P\left(\frac{X-\mu}{\sigma} \le \frac{-18.6-\mu}{\sigma}\right) \text{ standardize } X
$$

= $P\left(Z \le \frac{-18.6-\mu}{\sigma}\right) \text{ def'n of standard normal r.v.}$
= $\Phi\left(\frac{-18.6-\mu}{\sigma}\right) \text{ standard normal CDF}$

(cont'd next slide)

Example 3:

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ such that $P(X > 20.6) = P(X \leq -18.6) = 0.025?$ What are the values of μ and σ ?

Solution:

- \triangleright We need to satisfy the following: ► 1 – $\Phi\left(\frac{20.6-\mu}{\sigma}\right) = 0.025 \Rightarrow \Phi\left(\frac{20.6-\mu}{\sigma}\right) = 0.975$ and $\blacktriangleright \; \Phi\left(\frac{-18.6-\mu}{\sigma}\right) = 0.025$ \blacktriangleright From the Z-table, we can see
	- \blacktriangleright $\Phi(1.96) = 0.975$ and
	- \blacktriangleright $\Phi(-1.96) = 0.025$

 \triangleright We have the following system of equations:

$$
\begin{cases} \frac{20.6 - \mu}{\sigma} = 1.96\\ \frac{-18.6 - \mu}{\sigma} = -1.96 \end{cases} \Rightarrow \begin{cases} 20.6 - \mu = 1.96\sigma & (1) \\ -18.6 - \mu = -1.96\sigma & (2) \end{cases}
$$

▶ Subtracting Eqn (2) from Eqn (1), we have: 39.2 = 3.92 σ .

- \triangleright Hence, $\sigma = 10$.
- ► Using Eqn (1) to solve for μ , we have: $\mu = 20.6 1.96(10) = 1$. П

Example 4:

The annual rainfall (in inches) in a certain region is normally distributed with $\mu = 40$ and $\sigma = 4$. What is the probability that, starting with this year, it will take over 10 years before a year occurs having a rainfall of over 50 inches? What assumptions are you making? Solution:

Let X denote the annual rainfall and \overline{E} denote the event that it will take over 10 years starting from this year before a year occurs having a rain fall of over 50 inches.

$$
P(X > 50) = 1 - P(X \le 50)
$$
probability of rainfall over 50 inches
= $1 - P\left(\frac{X - 40}{4} \le \frac{50 - 40}{4}\right)$ standardize X
= $1 - P(Z \le 2.5)$ def'n of standard normal r.v.
= $1 - \Phi(2.5)$ standard normal CDF
= $1 - 0.99379 = 0.006$. Z-table value

Example 4:

The annual rainfall (in inches) in a certain region is normally distributed with $\mu = 40$ and $\sigma = 4$. What is the probability that, starting with this year, it will take over 10 years before a year occurs having a rainfall of over 50 inches? What assumptions are you making?

Solution:

Let X denote the annual rainfall and E denote the event that it will take over 10 years starting from this year before a year occurs having a rain fall of over 50 inches.

We computed $P(X > 50) = 0.006$, the probability of getting more than 50 inches of rain in any given year.

The goal is to compute:

 $P(E) = P(N$ one of the first 10 years have more than 50 inches of rain)

$$
10\quad
$$

$$
= \{1-P(X>50)\}\{1-P(X>50)\}\cdots\{1-P(X>50)\} \text{ independence} \\ = (1-0.006)^{10} = 0.94.
$$

Here, we assumed that the annual rainfall is independent from year to year.

Questions?

Homework Exercises: 4.61, 4.71, 4.73, 4.77, 4.81 Solutions will be discussed this Friday by the TA.