STAT 3375Q: Introduction to Mathematical Statistics I Lecture 13: Special Continuous Distributions: Beta, Student's t

Mary Lai Salvaña, Ph.D.

Department of Statistics University of Connecticut

March 6, 2024

Outline

1 Previously...

- Gamma Distribution
- Exponential Distribution
- ▶ χ^2 Distribution

2 Beta Distribution

$\mathbf{3}$ Student's t Distribution

Previously...

Gamma Distribution

• Notation:
$$Y \sim \text{Gam}(\alpha, \beta)$$

• Parameters:
$$\alpha > 0$$
 (shape), $\beta > 0$ (scale)

► PDF:
$$f(y) = \begin{cases} \frac{y^{\alpha-1}e^{-y/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, & 0 \le y < \infty, \\ 0, & \text{elsewhere,} \end{cases}$$

where $\Gamma(\cdot)$ is the gamma function, i.e.,

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy.$$

- CDF: no explicit form
- Mean or Expected Value: $\alpha\beta$
- ▶ Variance: $\alpha\beta^2$

Exponential Distribution

- Notation: $Y \sim \text{Exp}(\beta)$
- Parameters: $\beta > 0$ (scale)

► PDF:
$$f(y) = \begin{cases} \frac{1}{\beta} e^{-y/\beta}, & 0 \le y < \infty, \\ 0, & \text{elsewhere.} \end{cases}$$

► CDF: $F(y) = \begin{cases} 0, & y < 0 \\ 1 - e^{-y/\beta}, & 0 \le y < \infty \end{cases}$

- Mean or Expected Value: β
- Variance: β^2

χ^2 Distribution

- Notation: $Y \sim \chi^2(\nu)$
- Parameters: $\nu > 0$ (degrees of freedom)

► PDF:
$$f(y) = \begin{cases} \frac{1}{2^{\nu/2}\Gamma(\nu/2)} y^{\nu/2-1} e^{-y/2}, & 0 \le y < \infty, \\ 0, & \text{elsewhere.} \end{cases}$$

- CDF: no explicit form
- Mean or Expected Value: u
- Variance: 2ν

Definition: Beta Distribution

A random variable Y is said to have a *beta probability distribution* with parameters $\alpha > 0$ and $\beta > 0$ if and only if the density function of Y is

$$f(y) = egin{cases} rac{1}{B(lpha,eta)} y^{lpha-1} (1-y)^{eta-1}, & 0 \leq y \leq 1, \ 0, & ext{elsewhere,} \end{cases}$$

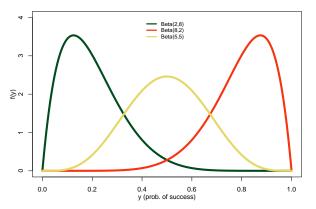
where $B(\cdot)$ is the beta function, i.e.,

$$B(\alpha,\beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

- Notation: $Y \sim \text{Beta}(\alpha, \beta)$, read as: "Y is a beta random variable with parameters α and β ."
- CDF: no explicit form; numerical calculations required

Alternative PDF formulation: $f(y) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha-1} (1-y)^{\beta-1}, & 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$

Beta Distribution: The Distribution for Probabilities

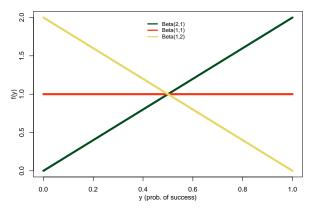


Beta Density Curves

- ▶ $\alpha > 1$ & $\beta > 1$: Bell-Shaped
- ▶ If $\alpha > 1$ & $\beta > 1$ & $\alpha < \beta$, the density curve is skewed to the right. (green curve)

▶ If $\alpha > 1$ & $\beta > 1$ & $\alpha > \beta$, the density curve is skewed to the left. (red curve)

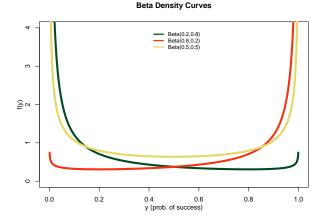
Beta Distribution: The Distribution for Probabilities



Beta Density Curves

- ▶ $\alpha = 1$ & $\beta = 2$: Straight Line
- ▶ $\alpha = 2$ & $\beta = 1$: Straight Line
- When $\alpha = \beta = 1$, Beta(1, 1) = U(0, 1).

Beta Distribution: The Distribution for Probabilities



▶ $\alpha < 1$ & $\beta < 1$: U-Shaped

	Random Variable	Distribution Function	Probability as a	Usage
Beta	$\mathbf{Y} \sim Beta(lpha, eta)$	$f(y) = \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1}$	random variable	model the prob.
				of success
Binomial	$X \sim B(n, y)$	$p(x) = \binom{n}{x} y^{x} (1-y)^{n-x}$	fixed parameter y	model the num
	n: num of trials			of successes
	y: prob. of success			

Matching the Beta PDF to the Binomial PMF, we can see that...

- $\alpha 1$ can be considered as the number of successes
- $\blacktriangleright~\beta-1$ can be considered as the number of failures

Beta Distribution: The Effect of $\boldsymbol{\alpha}$

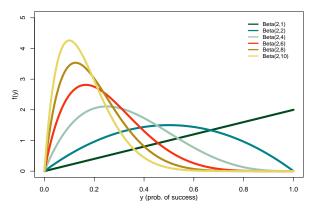
S 4 З Ś \sim 0 0.0 0.2 0.8 0.4 0.6 1.0 y (prob. of success)

Beta Density Curves

- As α increases (more successful events), the bulk of the probability distribution will shift towards the right.
 - probability of success must be closer to 1

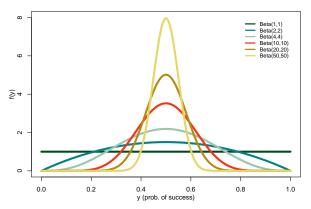
Beta Distribution: The Effect of β

Beta Density Curves



- As β increases (more failures), the bulk of the probability distribution will move towards the left.
 - probability of success must be closer to 0

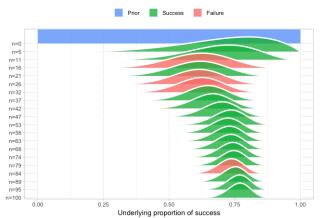
Beta Distribution: The Effect of $\alpha = \beta \rightarrow \infty$



Beta Density Curves

• Increasing both α and β , narrows the probability distribution, indicating greater certainty regarding the value of the random variable.

Bayesian Statistics



Binomial model - Data: 77 successes, 23 failures

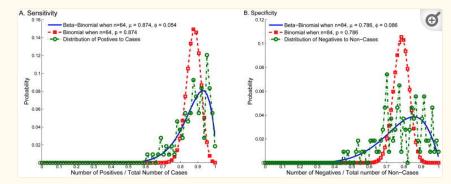
Source: https://www.sumsar.net/blog/2018/12/visualizing-the-beta-binomial/

Bayesian Statistics



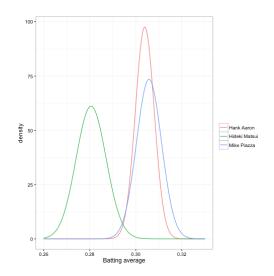
Source: https://www.thomasjpfan.com/2015/09/bayesian-coin-flips/

Mammography



Source: https://doi.org/10.1080/03610918.2014.960091

Sports



Source: http://varianceexplained.org/r/bayesian_ab_baseball/

Mary Lai Salvaña, Ph.D

Theorem: Beta Distribution

If Y has a beta distribution with parameters α and $\beta,$ then

$$\mu = E(Y) = rac{lpha}{lpha + eta} \quad ext{and} \quad \sigma^2 = V(Y) = rac{lpha eta}{(lpha + eta)^2 (lpha + eta + 1)}.$$

Proof:

$$\begin{split} E(Y) &= \int_{-\infty}^{\infty} yf(y)dy \\ &= \int_{0}^{1} y \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1} dy \\ &= \frac{1}{B(\alpha,\beta)} \int_{0}^{1} y^{\alpha} (1-y)^{\beta-1} dy \\ &= \frac{1}{B(\alpha,\beta)} B(\alpha+1,\beta) \\ &= \frac{1}{\frac{1}{\Gamma(\alpha)\Gamma(\beta)}} \frac{\Gamma(\alpha+1)\Gamma(\beta)}{\Gamma(\alpha+\beta+1)} \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+1)\Gamma(\beta)}{\Gamma(\alpha+\beta+1)} \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)} \frac{\alpha\Gamma(\alpha)}{(\alpha+\beta)\Gamma(\alpha+\beta)} \\ &= \frac{\alpha}{\alpha+\beta}. \end{split}$$

def'n of expected value

$$f(y) = \begin{cases} \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1}, & 0 \le y \le 1, \\ 0, & \text{elsewhere,} \end{cases}$$

Beta function: $B(\alpha, \beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy$ Beta function (alternative form): $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

Gamma function recursion property: $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$

(cont'd next slide...)

Proof:

$$\begin{split} E(Y^2) &= \int_{-\infty}^{\infty} y^2 f(y) dy \\ &= \int_0^1 y^2 \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1} dy \\ &= \frac{1}{B(\alpha,\beta)} \int_0^1 y^{\alpha+1} (1-y)^{\beta-1} dy \\ &= \frac{1}{B(\alpha,\beta)} B(\alpha+2,\beta) \\ &= \frac{1}{\frac{1}{B(\alpha,\beta)}} \frac{\Gamma(\alpha+2)\Gamma(\beta)}{\Gamma(\alpha+\beta+2)} \\ &= \frac{\Gamma(\alpha+\beta)}{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)}} \frac{\Gamma(\alpha+2)\Gamma(\beta)}{\Gamma(\alpha+\beta+2)} \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)} \frac{(\alpha+1)\Gamma(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta+1)} \\ &= \frac{\Gamma(\alpha+\beta)}{(\alpha+\beta+1)(\alpha+\beta)} \frac{(\alpha+1)\alpha}{(\alpha+\beta+1)(\alpha+\beta)}. \end{split}$$

def'n of expected value $\mathbf{y} \qquad f(y) = \begin{cases} \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1}, & 0 \le y \le 1, \\ 0, & \text{elsewhere,} \end{cases}$

Beta function: $B(\alpha, \beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy$ Beta function (alternative form): $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

Gamma function recursion property: $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ Gamma function recursion property: $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$

de Charles Constantes a s

$$V(Y) = E(Y^{2}) - \{E(Y)\}^{2}$$
 def'n of variance

$$= \frac{(\alpha+1)\alpha}{(\alpha+\beta+1)(\alpha+\beta)} - \left(\frac{\alpha}{\alpha+\beta}\right)^{2}$$

$$= \frac{(\alpha+1)\alpha}{(\alpha+\beta+1)(\alpha+\beta)} - \frac{\alpha^{2}}{(\alpha+\beta)^{2}}$$

$$= \frac{(\alpha+\beta)(\alpha+1)\alpha - \alpha^{2}(\alpha+\beta+1)}{(\alpha+\beta)^{2}(\alpha+\beta+1)} = \frac{\alpha^{3} + \alpha^{2}\beta + \alpha^{2} + \alpha\beta - \alpha^{3} - \alpha^{2}\beta - \alpha^{2}}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$

$$= \frac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}.$$

 $\int \mathbf{F}(\mathbf{V}) \mathbf{1}^2$

Example 1:

Assume the proportion of time, Y, a car is broken is approximately a beta with the following density,

$$f(y) = egin{cases} 5(1-y)^4, & 0 < y < 1, \ 0, & ext{elsewhere.} \end{cases}$$

What are α and β ?

Solution:

Matching the PDF above with the beta PDF:

$$f(y) = \begin{cases} \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1}, & 0 \le y \le 1, \\ 0, & \text{elsewhere,} \end{cases}$$

we need the following equalities:

▶
$$\alpha - 1 = 0$$
. Thus, $\alpha = 1$.
▶ $\beta - 1 = 4$. Thus, $\beta = 5$.
Note: $B(1,5) = \frac{\Gamma(1)\Gamma(5)}{\Gamma(1+5)} = \frac{(1)4!}{5!} = \frac{1}{5}$.

Example 2:

The maximum time to complete a certain project is 2.5 days. Suppose that the completion time as a proportion of this maximum is a Beta random variable with mean 0.4 and variance 0.2.

 Write the PDF of the project's completion time as a proportion of the maximum time.

Solution:

Let X be the random variable for the project's completion time as a proportion of the maximum time. X ~ Beta(α, β)

► Note:
$$X = \frac{\text{possible project completion time in days}}{\text{maximum project completion time in days}} \in [0, 1]$$

► Given:

► $E(X) = 0.4 \Rightarrow \frac{\alpha}{\alpha+\beta} = 0.4$ expected value formula of Beta RV ► $V(X) = 0.2 \Rightarrow \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.2$ variance formula of Beta RV

Solve the following system of equations:

$$\begin{cases} \frac{\alpha}{\alpha+\beta} = 0.4\\ \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.2 \end{cases} \Rightarrow \begin{cases} \alpha = 0.4\alpha + 0.4\beta\\ \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.2 \end{cases} \Rightarrow \begin{cases} \beta = \frac{3}{2}\alpha\\ \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.2 \end{cases}$$

Mary Lai Salvaña, Ph.D

cont

Example 2:

The maximum time to complete a certain project is 2.5 days. Suppose that the completion time as a proportion of this maximum is a Beta random variable with mean 0.4 and variance 0.2.

 Write the PDF of the project's completion time as a proportion of the maximum time.

Solution:

Solve the following system of equations:

$$\begin{cases} \beta = \frac{3}{2}\alpha \\ \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = 0.2 \end{cases} \Rightarrow \frac{\alpha\left(\frac{3}{2}\alpha\right)}{\left\{\alpha + \left(\frac{3}{2}\alpha\right)\right\}^2 \left\{\alpha + \left(\frac{3}{2}\alpha\right) + 1\right\}} = 0.2 \\ \Rightarrow \frac{\frac{3}{2}\alpha^2}{\left(\frac{5}{2}\alpha\right)^2 \left(\frac{5}{2}\alpha + 1\right)} = 0.2 \\ \Rightarrow \frac{6}{25}\frac{1}{\left(\frac{5}{2}\alpha + 1\right)} = \frac{1}{5} \\ \Rightarrow \frac{6}{5} = \frac{5}{2}\alpha + 1 \Rightarrow \alpha = \frac{2}{25} \Rightarrow \beta = \frac{3}{2}\left(\frac{2}{25}\right) = \frac{3}{25}. \end{cases}$$

(cont'

24 / 35

Example 2:

The maximum time to complete a certain project is 2.5 days. Suppose that the completion time as a proportion of this maximum is a Beta random variable with mean 0.4 and variance 0.2.

 Write the PDF of the project's completion time as a proportion of the maximum time.

Solution:

• Write the Beta PDF with
$$\alpha = \frac{2}{25}$$
 and $\beta = \frac{3}{25}$

$$f(x) = \begin{cases} \frac{1}{B(\frac{2}{25},\frac{3}{25})} x^{\frac{2}{25}-1} (1-x)^{\frac{3}{25}-1}, & 0 \le x \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

OR

$$f(x) = \begin{cases} \frac{\Gamma(\frac{2}{25} + \frac{3}{25})}{\Gamma(\frac{2}{25})\Gamma(\frac{3}{25})} x^{\frac{2}{25}-1} (1-x)^{\frac{3}{25}-1}, & 0 \le x \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Example 2:

The maximum time to complete a certain project is 2.5 days. Suppose that the completion time as a proportion of this maximum is a Beta random variable with mean 0.4 and variance 0.2.

What is the probability that the task requires more than two days to complete?

Solution:

▶ We are looking for
$$P(X > \frac{2}{2.5})$$
. Why? Recall: $X = \frac{\text{possible project completion time in days}}{\text{maximum project completion time in days}} \in [0, 1]$

$$P\left(X > \frac{2}{2.5}\right) = P(X > 0.8)$$

= $\int_{0.8}^{1} f(x) dx$
= $\int_{0.8}^{1} \frac{1}{B(\frac{2}{25}, \frac{3}{25})} x^{\frac{2}{25}-1} (1-x)^{\frac{3}{25}-1} dx.$

You can keep your answer in this form.

Example 3:

Suppose X has the beta distribution with parameters α and β , and let r and s be positive integers. Determine the value of $E\{X^r(1-X)^s\}$. Solution:

$$E(X^{r}(1-X)^{s}) = \int_{-\infty}^{\infty} x^{r}(1-x)^{s} f(x) dx \quad \text{def n of expected value}$$

$$= \int_{0}^{1} x^{r}(1-x)^{s} \frac{1}{B(\alpha,\beta)} x^{\alpha-1}(1-x)^{\beta-1} dx$$

$$\text{Beta PDF: } f(y) = \begin{cases} \frac{1}{B(\alpha,\beta)} y^{\alpha-1}(1-y)^{\beta-1}, & 0 \le y \le 1, \\ 0, & \text{elsewhere,} \end{cases}$$

$$= \frac{1}{B(\alpha,\beta)} \int_{0}^{1} x^{\alpha+r-1} (1-x)^{\beta+s-1} dx$$

$$= \frac{1}{B(\alpha,\beta)} B(\alpha+r,\beta+s).$$

$$\text{Beta function: } B(\alpha,\beta) = \int_{0}^{1} y^{\alpha-1}(1-y)^{\beta-1} dy \quad \Box$$

Student's t Distribution

Student's t Distribution

Definition: Student's *t* Distribution

If $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi^2(
u)$ are independent, then the random variable

$$Y = \frac{Z}{\sqrt{U/\nu}}$$

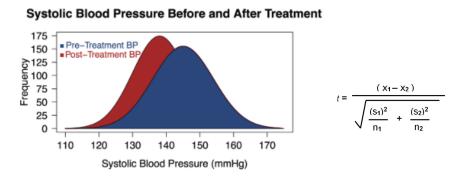
follows a Student's t probability distribution with ν degrees of freedom and its density function is

$$f(y) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{y^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad -\infty \le y \le \infty.$$

- Notation: Y ~ t_(ν), read as: "Y is a Student's t random variable with ν degrees of freedom."
- Also called t-distribution
- developed by William S. Gosset who published under the pseudonym Student
 Mary Lai Salvaña, Ph.D.
 UConn STAT 3375Q
 Introduction to Mathematical Statistics I Lec 13
 29 / 35

Student's t Distribution: Application

Hypothesis Testing: T-test



Source: https://www.biologyforlife.com/t-test.html

Theorem: Student's t Distribution

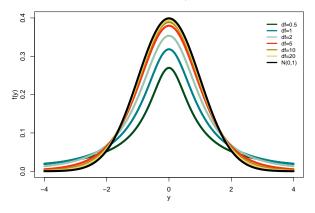
If Y has a Student's t distribution with ν degrees of freedom, then

$$\mu = E(Y) = 0$$
 and $\sigma^2 = V(Y) = \frac{\nu}{\nu - 2}$.

Proof: Left as exercise.

Student's Distribution: The Effect of $\boldsymbol{\nu}$

Student's t Density Curves



- Close to the standard normal except for heavy tails.
- As ν increases, the Student's t distribution approaches the standard normal distribution.

Bonus Exercise

Questions?

Homework Exercises: 4.93, 4.95, 4.101, 4.103, 4.111

Solutions will be discussed this Friday by the TA.