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Quiz 4 Review Exercises Solutions
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Problem 1

Suppose the grades on this quiz is normally distributed with a mean score
of 70 points and standard deviation of 10 points. Furthermore, suppose I
decide to give the top 10% a bonus of 5 points. What should be the cutoff
score to merit the bonus points?

Solution:
▶ We want to find the cutoff score x such that

P(X ≥ x) = 0.10.

▶ This is equivalent to finding the cutoff score x such that

P

(
X − µ

σ
≥ x − µ

σ

)
= 0.10

⇒ P
(
Z ≥ x − µ

σ

)
= 0.10

⇒ 1− P
(
Z <

x − µ

σ

)
= 0.10

⇒ P
(
Z <

x − µ

σ

)
= 0.90.

(cont’d next slide)
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Problem 1

Suppose the grades on this quiz is normally distributed with a mean score
of 70 points and standard deviation of 10 points. Furthermore, suppose I
decide to give the top 10% a bonus of 5 points. What should be the cutoff
score to merit the bonus points?

Solution:
▶ From the Z-table, P (Z < 1.28) ≈ 0.9. This means that

x − µ

σ
= 1.28.

Solving for x and replacing µ = 70 and σ = 10 (given), we have

x − 70

10
= 1.28

⇒ x − 70 = 12.8

⇒ x = 82.8.

▶ Thus, the cutoff score for the bonus points is 82.8.
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Problem 2

Let X have MGF given by

m(t) =
1

3
et +

2

3
e2t , t ∈ R.

a What is the distribution of X?

Solution:

▶ Matching the MGF above to the MGF formula
m(t) = E (etX ) =

∑
y e

txp(x), we know that the MGF above
corresponds to a discrete random variable with PMF:

p(x) =


1
3 , if x = 1,
2
3 , if x = 2,

0, elsewhere.

(cont’d next slide)
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Problem 2

Let X have MGF given by

m(t) =
1

3
et +

2

3
e2t , t ∈ R.

b Find the expected value and variance of X .
Solution:

▶ Finding the expected value:

m′(t) =
1

3
et +

4

3
e2t

E(X ) = m′(0) =
1

3
e(0) +

4

3
e2(0) =

5

3
.

▶ Finding the variance:

m′′(t) =
1

3
et +

8

3
e2t

E(X 2) = m′′(0) =
1

3
e(0) +

8

3
e2(0) =

9

3
= 3.

V (X ) = E(X 2)− {E(X )}2 = 3−
(
5

3

)2

=
2

9
.
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Problem 3

Verify that the standard normal PDF

ϕ(z) =
1√
2π

e−
z2

2 , −∞ < z < ∞,

is a valid PDF.
Solution:∫ ∞

−∞
ϕ(z)dz =

∫ ∞

−∞

1√
2π

e−
z2

2 dz = 2

∫ ∞

0

1√
2π

e−
z2

2 dz since
1

√
2π

e
− z2

2 is an even function

= 2
1√
2π

∫ ∞

0

z−1e−
z2

2 zdz multiply a factor of 1

= 2
1√
2π

∫ ∞

0

(
√
2t)−1e−tdt Let t = z2/2 ⇒ dt = zdz. ⇒ z =

√
2t.

= 2
1√
2π

1√
2

∫ ∞

0

t−
1
2 e−tdt =

1√
π

∫ ∞

0

t−
1
2 e−tdt =

1√
π

∫ ∞

0

t
1
2
−1e−tdt

=
1√
π
Γ(1/2) Recall the Gamma function: Γ(α) =

∫ ∞

0
yα−1e−y dy .

=
1√
π

√
π Recall properties of the Gamma function: Γ(1/2) =

√
π.

= 1. Thus, the standard normal PDF is a valid PDF.
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Problem 4

Suppose Y ∼ N (µ, σ2). Find the expected value of the area of the
rectangle below.

Solution:
▶ Given: Y ∼ N (µ, σ2), L = 3|Y |, W = |Y |.
▶ Formula for area of rectangle: A = L×W .
▶ Thus,

E (A) = E (3|Y | × |Y |)
= 3E (Y 2) linearity property of expectation

= 3[V (Y ) + {E (Y )}2] variance formula

= 3(σ2 + µ2). given
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Problem 5

Suppose that X has the Gamma distribution with parameters α and β.
Let c be a positive constant. Show that cX has the Gamma distribution
with parameters α and cβ.

Solution:
We can use the MGF to solve this problem. The MGF of cX is

mcX (t) = E
(
etcX

)
def’n of MGF

= E
(
e(tc)X

)
= mX (ct) def’n of MGF isolate the random variable X

=
1

(1− βct)α
. Since X ∼ Gam(α, β), MGF of Gamma: m(t) =

1

(1 − βt)α
.

Here ct is used instead of t.

The MGF above is identical to the MGF of a Gamma distribution with
parameters α and cβ. Thus, cX ∼ Gam(α, cβ).
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Previously...
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Moment Generating Functions

▶ kth Moment: E (Y k) = µ
′
k

▶ kth Central Moment: E{(Y − µ)k} = µk

▶ Moment Generating Function (MGF): m(t) = E
(
etY

)
▶ To obtain the kth moment:

E (Y k) = µ
′
k =

dkm(t)

dtk

∣∣∣
t=0

= m
(k)
Y (0).

▶ MGF of a linear transformation: maX+b(t) = ebtmX (at)
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Moment Generating Functions

Distribution PMF/PDF E(Y) V(Y) MGF
Bernoulli p(y) = py (1− p)1−y p p(1− p) m(t) = pet + 1− p

Binomial p(y) =

(
n
y

)
py (1− p)n−y np np(1− p) m(t) = (pet + 1− p)n

Geometric p(y) = (1− p)y−1p 1
p

1−p
p2

m(t) = pet 1
1−et(1−p)

Poisson p(y) = λy

y ! e
−λ λ λ m(t) = eλ(e

t−1)

Uniform f (y) = 1
θ2−θ1

θ1+θ2
2

(θ2−θ1)2

12 m(t) =

{
etθ2−etθ1
t(θ2−θ1)

, if t ̸= 0

1 if t = 0

Std. Normal ϕ(z) = 1√
2π
e−

z2

2 0 1 m(t) = e
t2

2

Normal f (y) = 1√
2πσ2

e−
(y−µ)2

2σ2 µ σ2 m(t) = eµt+
σ2t2

2

Exponential f (y) = 1
β e

−y/β β β2 m(t) = 1
1−βt

Gamma f (y) = yα−1e−y/β

βαΓ(α) αβ αβ2 m(t) = 1
(1−βt)α
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Multivariate Probability Distributions
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: https://doi.org/10.1038/nclimate1908
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: Salvaña, M. L. O., Abdulah, S., Huang, H., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2021). High

performance multivariate spatial modeling for geostatistical data on manycore systems. IEEE Transactions on Parallel and

Distributed Systems, 32(11), 2719-2733.
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: https://doi.org/10.1101/091926
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Analyses of genetic correlations among externalizing traits.

Source: https://doi.org/10.1101/2020.10.16.342501
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

fMRI data showing how different tasks activate different nodes of the brain.

Source: https://doi.org/10.1177/0956797620916786
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

The plot reveals the right trade off between ball velocity and angle.

Source: https://fivethirtyeight.com/features/the-new-science-of-hitting/
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Colored images can be represented by three color channels namely red, green and blue.

Source: https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

A graphical model of how stock prices are influenced by other factors.

Source: https://www.causact.com/joint-distributions-tell-you-everything
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: https://centerpointsecurities.com/interconnectedness-of-markets/
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: https://centerpointsecurities.com/interconnectedness-of-markets/
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: https://centerpointsecurities.com/interconnectedness-of-markets/
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: https://centerpointsecurities.com/interconnectedness-of-markets/
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Source: https://centerpointsecurities.com/interconnectedness-of-markets/
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Multivariate Probability Distributions: Introduction

Recall the Univariate Gaussian PDF:

f (y) =
1√
2πσ2

e−
(y−µ)2

2σ2

Multivariate challenge: How will this look like with two random variables?

Bivariate Gaussian PDF:

f (y1, y2) =
1

2πσ1σ2
√
1− ρ2

e
− 1

2(1−ρ2)

{(
y1−µ1

σ1

)2
−2ρ

(
y1−µ1

σ1

)(
y2−µ2

σ2

)
+
(

y2−µ2
σ2

)2
}
,

▶ µ1 and σ2
1 are the mean and variance, respectively, of Y1,

▶ µ2 and σ2
2 are the mean and variance, respectively, of Y2,

▶ σ12 = ρσ1σ2 is the covariance of Y1 and Y2, where ρ is the correlation coefficient
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Univariate → Bivariate (Discrete)
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Univariate → Bivariate (Continuous)
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Joint Probability Mass Function (Discrete)

Definition: Joint PMF for Discrete Random Variables

Let Y1,Y2, . . . ,Yn be discrete random variables. The joint probability
mass function (PMF) for Y1,Y2, . . . ,Yn is given by

p(y1, y2, . . . , yn) = P(Y1 = y1,Y2 = y2, · · · ,Yn = yn),

for −∞ < y1, y2, . . . , yn < ∞.

▶ p(y1, y2, . . . , yn) gives the probability of the following event:

{Y1 = y1} ∩ {Y2 = y2} ∩ . . . ∩ {Yn = yn}.

▶ The joint PMF can be summarized/described by a table.

y
X\Y 1 2 3 4

x

1 P(X = 1,Y = 1) P(X = 1,Y = 2) P(X = 1,Y = 3) P(X = 1,Y = 4)
2 P(X = 2,Y = 1) P(X = 2,Y = 2) P(X = 2,Y = 3) P(X = 2,Y = 4)
3 P(X = 3,Y = 1) P(X = 3,Y = 2) P(X = 3,Y = 3) P(X = 3,Y = 4)
4 P(X = 4,Y = 1) P(X = 4,Y = 2) P(X = 4,Y = 3) P(X = 4,Y = 4)
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Joint Probability Mass Function (Discrete)

Example 1:
Roll two dice. Let X and Y be the value on the first and second die,
respectively. Write the joint probability table of X and Y .
Solution:

▶ The sample space of X and Y is {1, 2, 3, 4, 5, 6}.
Thus, let x , y = 1, 2, 3, 4, 5, 6.

▶ We know that
P(X = x ,Y = y) = P(X = x)P(Y = y) =

(
1
6

) (
1
6

)
= 1

36 .
▶ Thus, the joint probability table of X and Y is as follows:

y
X\Y 1 2 3 4 5 6

x

1 1/36 1/36 1/36 1/36 1/36 1/36
2 1/36 1/36 1/36 1/36 1/36 1/36
3 1/36 1/36 1/36 1/36 1/36 1/36
4 1/36 1/36 1/36 1/36 1/36 1/36
5 1/36 1/36 1/36 1/36 1/36 1/36
6 1/36 1/36 1/36 1/36 1/36 1/36
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Joint Probability Mass Function (Discrete)

Example 2:
Roll two dice. Let X be the value on the first die and let T be the total on
both dice. Write the joint probability table of X and T .
Solution:

▶ Let x = 1, 2, 3, 4, 5, 6 and t = 2, 3, . . . , 12.

▶ Let Y be the value on the second die and Y takes on values 1 ≤ y ≤ 6.

P(X = x ,T = t) = P(X = x ,Y = t − x) = P(X = x)P(Y = t − x)

=

(
1

6

)(
1

6

)
=

1

36
, for 1 ≤ t − x ≤ 6 ⇒ 1 + x ≤ t ≤ 6 + x .

▶ Thus, the joint probability table of X and T is as follows:

t
X\T 2 3 4 5 6 7 8 9 10 11 12

x

1 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 0
2 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0
3 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0
4 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0
5 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0
6 0 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36
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Joint Probability Mass Function (Discrete)

Theorem: Properties of Joint PMFs

If Y1,Y2, . . . ,Yn are discrete random variables with joint PMF
p(y1, y2, . . . , yn), then

1 p(y1, y2, . . . , yn) ≥ 0, for all y1, y2, . . . , yn.

2
∑

y1,y2,...,yn
p(y1, y2, . . . , yn) = 1, where the sum is over all values

(y1, y2, . . . , yn) that are assigned nonzero probabilities.
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Joint Probability Mass Function (Discrete)

Example 3: Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 1 2 3 4

x

1 1/16 0 1/8 1/16
2 1/32 1/32 1/4 0
3 0 1/8 1/16 1/16
4 1/16 1/32 1/16 1/32

a Is the PMF above valid?

Solution:
Check that the following properties are satisfied:

▶ p(x , y) ≥ 0 for all x and y .

▶
∑4

x=1

∑4
y=1 p(x , y) = 1.
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Joint Probability Mass Function (Discrete)

Example 3: Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 1 2 3 4

x

1 1/16 0 1/8 1/16
2 1/32 1/32 1/4 0
3 0 1/8 1/16 1/16
4 1/16 1/32 1/16 1/32

b Find P(X = Y ).

Solution:

P(X = Y ) = p(1, 1) + p(2, 2) + p(3, 3) + p(4, 4)

= 1/16 + 1/32 + 1/16 + 1/32

= 0.1875.
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Joint Probability Mass Function (Discrete)

Example 4: The joint distribution p(x , y) of X (number of cars) and Y
(number of buses) per signal cycle at a traffic signal is given by:

y
X\Y 0 1 2

x

0 0.025 0.015 0.010
1 0.050 0.030 0.020
2 0.125 0.075 0.050
3 0.150 0.090 0.060
4 0.100 0.060 0.040
5 0.050 0.030 0.020

a Is the PMF above valid?

Solution:
Check that the following properties are satisfied:

▶ p(x , y) ≥ 0 for all x and y .

▶
∑5

x=0

∑2
y=0 p(x , y) = 1.
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Joint Probability Mass Function (Discrete)

Example 4: The joint distribution p(x , y) of X (number of cars) and Y
(number of buses) per signal cycle at a traffic signal is given by:

y
X\Y 0 1 2

x

0 0.025 0.015 0.010
1 0.050 0.030 0.020
2 0.125 0.075 0.050
3 0.150 0.090 0.060
4 0.100 0.060 0.040
5 0.050 0.030 0.020

b Find P(X = Y ).

Solution:

P(X = Y ) = p(0, 0) + p(1, 1) + p(2, 2)

= 0.025 + 0.030 + 0.050

= 0.105.
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Joint Probability Mass Function (Discrete)

Example 5: Let X be a coin flip and Y be a die. Find the joint PMF.
Solution:

▶ The sample space of X is {0, 1}.
▶ The sample space of Y is {1, 2, 3, 4, 5, 6}.
▶ We know that

P(X = x ,Y = y) = P(X = x)P(Y = y) =
(
1
2

) (
1
6

)
= 1

12 .

▶ The joint PMF therefore is

y
X\Y 1 2 3 4 5 6

x
0 1/12 1/12 1/12 1/12 1/12 1/12
1 1/12 1/12 1/12 1/12 1/12 1/12

▶ Or written as an equation:

p(x , y) =
1

12
, x = 0, 1, y = 1, 2, 3, 4, 5, 6.
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Joint Probability Mass Function (Discrete)

Example 6: Let X be a coin flip and Y be a die.
Define A = {X + Y = 3}. Find P(A).
Solution:
Recall the joint probability table from previous slide:

y
X\Y 1 2 3 4 5 6

x
0 1/12 1/12 1/12 1/12 1/12 1/12
1 1/12 1/12 1/12 1/12 1/12 1/12

P(A) =
∑

(x ,y)∈A

p(x , y)

= p(0, 3) + p(1, 2)

=
1

12
+

1

12

=
1

6
.
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Joint Probability Mass Function (Discrete)

Example 7: Let X be a coin flip and Y be a die.
Define B = {min(X ,Y ) = 1}. Find P(B).
Solution:
Recall the joint probability table from previous slide:

y
X\Y 1 2 3 4 5 6

x
0 1/12 1/12 1/12 1/12 1/12 1/12
1 1/12 1/12 1/12 1/12 1/12 1/12

P(B) =
∑

(x ,y)∈B

p(x , y)

= p(1, 1) + p(1, 2) + p(1, 3) + p(1, 4) + p(1, 5) + p(1, 6)

=
1

12
+

1

12
+

1

12
+

1

12
+

1

12
+

1

12

=
1

2
.
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Joint Cumulative Distribution Function (Disc./Cont.)

Definition: Joint CDF

Let Y1,Y2, . . . ,Yn be (discrete or continuous) random variables. The joint
cumulative distribution function (CDF) for Y1,Y2, . . . ,Yn is

F (y1, y2, . . . , yn) = P(Y1 ≤ y1,Y2 ≤ y2, · · · ,Yn ≤ yn),

for −∞ < y1, y2, . . . , yn < ∞.

▶ F (y1, y2, . . . , yn) gives the probability of the following event:

{Y1 ≤ y1} ∩ {Y2 ≤ y2} ∩ . . . ∩ {Yn ≤ yn}.
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Joint Cumulative Distribution Function (Disc./Cont.)

Theorem: Properties of Joint CDFs

1 If Y1,Y2, . . . ,Yn are random variables with joint CDF
F (y1, y2, . . . , yn), then

F (−∞,−∞, . . . ,−∞) = F (y1,−∞, . . . ,−∞) =

F (−∞, y2, . . . ,−∞) = · · · = F (−∞,−∞, . . . , yn) = 0.

2 F (∞,∞, . . . ,∞) = 1.

▶ Condition 1 tells us that

P({Y1 ≤ −∞} ∩ {Y2 ≤ −∞} ∩ . . . ∩ {Yn ≤ −∞})
= P({Y1 ≤ −∞} ∩ {Y2 ≤ y2} ∩ . . . ∩ {Yn ≤ −∞})

...

= P({Y1 ≤ −∞} ∩ {Y2 ≤ −∞} ∩ . . . ∩ {Yn ≤ yn}) = 0.

▶ Condition 2 tells us that

P({Y1 ≤ ∞} ∩ {Y2 ≤ ∞} ∩ . . . ∩ {Yn ≤ ∞}) = 1.
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Joint Cumulative Distribution Function (Discrete)

Example 8: Recall the joint probability for X ,Y in Example 1. Compute
F (3.5, 4).

Solution:

▶ F (3.5, 4) = P(X ≤ 3.5,Y ≤ 4). We can visualize this event as the
shaded cells in the table:

y
X\Y 1 2 3 4 5 6

x

1 1/36 1/36 1/36 1/36 1/36 1/36
2 1/36 1/36 1/36 1/36 1/36 1/36
3 1/36 1/36 1/36 1/36 1/36 1/36
4 1/36 1/36 1/36 1/36 1/36 1/36
5 1/36 1/36 1/36 1/36 1/36 1/36
6 1/36 1/36 1/36 1/36 1/36 1/36

▶ Adding up the probabilities, we get F (3.5, 4) = 12× 1
36 = 1

3 .
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Joint Probability Density Function (Continuous)

Definition: Joint PDF for Continuous Random Variables

Let Y1,Y2, . . . ,Yn be continuous random variables with joint CDF
F (y1, y2, . . . , yn). If there exists a nonnegative function f (y1, y2, . . . , yn),
such that

F (y1, y2, . . . , yn) =

∫ y1

−∞

∫ y2

−∞
· · ·

∫ yn

−∞
f (t1, t2, . . . , tn)dt1dt2 · · · dtn,

for −∞ < y1, y2, . . . , yn < ∞, then Y1,Y2, . . . ,Yn are said to be jointly
continuous random variables. The function f (y1, y2, . . . , yn) is called the
joint probability density function (PDF).
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Joint Probability Density Function (Continuous)

Theorem: Properties of Joint PDFs

If f (y1, y2, . . . , yn) is a joint density function for Y1,Y2, . . . ,Yn, then

1 f (y1, y2, . . . , yn) ≥ 0, for all y1, y2, . . . , yn.

2
∫∞
−∞

∫∞
−∞ · · ·

∫∞
−∞ f (y1, y2, . . . , yn)dy1dy2 · · · dyn = 1.
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Joint Probability Density Function (Continuous)

Example 9:
Suppose X and Y both take values in [0, 1] with uniform density
f (x , y) = 1. Visualize the event X > Y and find its probability.
Solution:

▶ The event X > Y corresponds to the region in the unit square where the x values
are greater than the y values.

▶ Use the line y = x as a guide to find the region corresponding to the event X > Y .

3D Visualization 2D Visualization

▶ P(X > Y ) =
∫ ∫

{(x,y):X>Y} f (x , y)dxdy =
∫ 1

0

∫ 1

y
1dxdy =

∫ 1

0
x
∣∣1
y
dy =∫ 1

0
(1− y)dy =

(
y − y2

2

) ∣∣1
0
= 1− 1

2
= 1

2
.
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Joint Probability Density Function (Continuous)

Example 9:
Suppose X and Y both take values in [0, 1] with uniform density
f (x , y) = 1. Visualize the event X > Y and find its probability.
Solution:

▶ Another way to compute P(X > Y ):

Probability of X > Y is the volume of
the triangular prism.

P(X > Y ) =
1

2
× volume of cube

=
1

2
. Vol. cube = 1

OR

P(X > Y ) = vol. of triangular prism

= Area of base× height

=
1

2
. Area of base = 1/2, height = 1
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Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

f (x , y) =

{
6x2y , 0 ≤ x ≤ y , x + y ≤ 2,

0, elsewhere.

a Is this is a valid PDF?

Solution:
▶ f (x , y) is nonnegative everywhere.

▶ We need to check whether f (x , y) integrates to 1.∫ ∞

−∞

∫ ∞

−∞
f (x , y)dxdy =

∫ ???

???

∫ ???

???

6x2ydxdy

▶ KEY QUESTION: What are the bounds of integration?
(cont’d next slide...)
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Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

f (x , y) =

{
6x2y , 0 ≤ x ≤ y , x + y ≤ 2,

0, elsewhere.

a Is this is a valid PDF?

Solution:
▶ KEY QUESTION: What are the bounds of integration?
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Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

f (x , y) =

{
6x2y , 0 ≤ x ≤ y , x + y ≤ 2,

0, elsewhere.

a Is this is a valid PDF? Check whether
∫ ∫

f (x , y)dxdy = 1.

Solution:
▶

∫ 1

0

∫ 2−x

x
6x2ydydx =

∫ 1

0
6x2 y2

2

∣∣∣2−x

x
dx

=
∫ 1

0
6x2 (2−x)2−x2

2
dx

=
∫ 1

0
6x2 4−4x+x2−x2

2
dx

=
∫ 1

0
6x2(2− 2x)dx

=
∫ 1

0
6x22(1− x)dx

= 12
∫ 1

0
x2(1− x)dx

Beta function: B(α, β) =
∫ 1
0 yα−1(1 − y)β−1dy =

Γ(α)Γ(β)
Γ(α+β)

= 12B(3, 2) = 12 Γ(3)Γ(2)
Γ(5)

= 12 2!1!
4!

= 1.
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Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

f (x , y) =

{
6x2y , 0 ≤ x ≤ y , x + y ≤ 2,

0, elsewhere.

b What is the probability that X + Y is less than 1?

Solution:
▶ P(X + Y < 1) =

∫ 1/2

0

∫ 1−x

x
6x2ydydx

=
∫ 1/2

0
6x2 y2

2

∣∣∣1−x

x
dx

=
∫ 1/2

0
6x2 (1−x)2−x2

2
dx

=
∫ 1/2

0
6x2 1−2x+x2−x2

2
dx

=
∫ 1/2

0
3x2(1− 2x)dx

=
∫ 1/2

0
3x2 − 6x3dx

= x3 − 6
4
x4
∣∣∣1/2
0

= 1
8
− 3

2

(
1
2

)4
= 1

8
− 3

32
= 1

32
.
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Questions?
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Homework Exercises: 4.139, 4.141, 4.142, 4.143, 4.181
Solutions will be discussed this Friday by the TA.

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 15 55 / 55


	Quiz 4 Review Exercises Solutions
	Previously...
	Moment Generating Functions

	Multivariate Probability Distributions
	Introduction
	Joint Probability Mass Function (Discrete)
	Joint Cumulative Distribution Function (Discrete/Continuous)
	Joint Probability Density Function (Continuous)


