STAT 3375Q: Introduction to Mathematical Statistics I Lecture 15: Multivariate Probability Distributions

Mary Lai Salvaña, Ph.D.

Department of Statistics University of Connecticut

March 20, 2024

Outline

1 Quiz 4 Review Exercises Solutions

- 2 Previously...
 - Moment Generating Functions

3 Multivariate Probability Distributions

- Introduction
- Joint Probability Mass Function (Discrete)
- ▶ Joint Cumulative Distribution Function (Discrete/Continuous)
- Joint Probability Density Function (Continuous)

Quiz 4 Review Exercises Solutions

Suppose the grades on this quiz is normally distributed with a mean score of 70 points and standard deviation of 10 points. Furthermore, suppose I decide to give the top 10% a bonus of 5 points. What should be the cutoff score to merit the bonus points?

Solution:

We want to find the cutoff score x such that

 $P(X \ge x) = 0.10.$

This is equivalent to finding the cutoff score x such that

$$P\left(\frac{X-\mu}{\sigma} \ge \frac{x-\mu}{\sigma}\right) = 0.10$$
$$\Rightarrow P\left(Z \ge \frac{x-\mu}{\sigma}\right) = 0.10$$
$$\Rightarrow 1 - P\left(Z < \frac{x-\mu}{\sigma}\right) = 0.10$$
$$\Rightarrow P\left(Z < \frac{x-\mu}{\sigma}\right) = 0.90.$$

(cont'd next slide)

Suppose the grades on this quiz is normally distributed with a mean score of 70 points and standard deviation of 10 points. Furthermore, suppose I decide to give the top 10% a bonus of 5 points. What should be the cutoff score to merit the bonus points?

Solution:

From the Z-table, $P(Z < 1.28) \approx 0.9$. This means that

$$\frac{x-\mu}{\sigma} = 1.28.$$

Solving for x and replacing $\mu = 70$ and $\sigma = 10$ (given), we have

$$\frac{x-70}{10} = 1.28$$

$$\Rightarrow x-70 = 12.8$$

$$\Rightarrow x = 82.8.$$

Thus, the cutoff score for the bonus points is 82.8.

Let X have MGF given by

$$m(t)=rac{1}{3}e^t+rac{2}{3}e^{2t},\quad t\in\mathbb{R}.$$

a What is the distribution of X?

Solution:

Matching the MGF above to the MGF formula m(t) = E(e^{tX}) = ∑_y e^{tx}p(x), we know that the MGF above corresponds to a discrete random variable with PMF:

$$p(x) = \begin{cases} \frac{1}{3}, & \text{if } x = 1, \\ \frac{2}{3}, & \text{if } x = 2, \\ 0, & \text{elsewhere.} \end{cases}$$

(cont'd next slide)

Let X have MGF given by

$$m(t)=rac{1}{3}e^t+rac{2}{3}e^{2t},\quad t\in\mathbb{R}.$$

b Find the expected value and variance of *X*. Solution:

Finding the expected value:

$$m'(t) = \frac{1}{3}e^{t} + \frac{4}{3}e^{2t}$$
$$E(X) = m'(0) = \frac{1}{3}e^{(0)} + \frac{4}{3}e^{2(0)} = \frac{5}{3}.$$

Finding the variance:

$$m''(t) = \frac{1}{3}e^{t} + \frac{8}{3}e^{2t}$$

$$E(X^{2}) = m''(0) = \frac{1}{3}e^{(0)} + \frac{8}{3}e^{2(0)} = \frac{9}{3} = 3.$$

$$V(X) = E(X^{2}) - \{E(X)\}^{2} = 3 - \left(\frac{5}{3}\right)^{2} = \frac{2}{9}$$

Verify that the standard normal PDF

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad -\infty < z < \infty,$$

is a valid PDF. Solution:

$$\int_{-\infty}^{\infty} \phi(z) dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 2 \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \quad \text{since } \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \text{ is an even function}$$

$$= 2 \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} z^{-1} e^{-\frac{z^2}{2}} z dz \quad \text{multiply a factor of 1}$$

$$= 2 \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} (\sqrt{2t})^{-1} e^{-t} dt \quad \text{Let } t = z^2/2 \Rightarrow dt = z dz. \Rightarrow z = \sqrt{2t}.$$

$$= 2 \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} t^{\frac{1}{2}-1} e^{-t} dt$$

$$= \frac{1}{\sqrt{\pi}} \Gamma(1/2) \quad \text{Recall the Gamma function: } \Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy.$$

$$= \frac{1}{\sqrt{\pi}} \sqrt{\pi} \quad \text{Recall properties of the Gamma function: } \Gamma(1/2) = \sqrt{\pi}.$$

$$= 1. \quad \text{Thus, the standard normal PDF is a valid PDF. \square$$

Suppose $Y \sim \mathcal{N}(\mu, \sigma^2)$. Find the expected value of the area of the rectangle below.

Solution:

- ► Given: $Y \sim \mathcal{N}(\mu, \sigma^2)$, L = 3|Y|, W = |Y|.
- Formula for area of rectangle: $A = L \times W$.

► Thus,

$$\begin{split} E(A) &= E(3|Y| \times |Y|) \\ &= 3E(Y^2) \quad \text{linearity property of expectation} \\ &= 3[V(Y) + \{E(Y)\}^2] \quad \text{variance formula} \\ &= 3(\sigma^2 + \mu^2). \quad \text{given} \quad \Box \end{split}$$

Suppose that X has the Gamma distribution with parameters α and β . Let c be a positive constant. Show that cX has the Gamma distribution with parameters α and $c\beta$.

Solution:

We can use the MGF to solve this problem. The MGF of cX is

$$\begin{split} m_{cX}(t) &= E\left(e^{tcX}\right) & \text{def'n of MGF} \\ &= E\left(e^{(tc)X}\right) \\ &= m_X(ct) & \text{def'n of MGF} \quad \text{isolate the random variable } X \\ &= \frac{1}{(1-\beta ct)^{\alpha}}. \quad \text{Since } X \sim \text{Gam}(\alpha,\beta), \text{ MGF of Gamma: } m(t) = \frac{1}{(1-\beta t)^{\alpha}}. \end{split}$$

The MGF above is identical to the MGF of a Gamma distribution with parameters α and $c\beta$. Thus, $cX \sim \text{Gam}(\alpha, c\beta)$.

Mary Lai Salvaña, Ph.D

UConn STAT 3375Q

10 / 55

Previously...

Moment Generating Functions

- *k*th Moment: $E(Y^k) = \mu'_k$
- ► *k*th Central Moment: $E\{(Y \mu)^k\} = \mu_k$
- ▶ Moment Generating Function (MGF): $m(t) = E(e^{tY})$
- To obtain the kth moment:

$$E(Y^{k}) = \mu'_{k} = \frac{d^{k}m(t)}{dt^{k}}\Big|_{t=0} = m_{Y}^{(k)}(0).$$

• MGF of a linear transformation: $m_{aX+b}(t) = e^{bt}m_X(at)$

Moment Generating Functions

Distribution	PMF/PDF	E (Y)	V (Y)	MGF
Bernoulli	$p(y)=p^y(1-p)^{1-y}$	р	p(1 - p)	$m(t) = pe^t + 1 - p$
Binomial	$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y}$	np	np(1-p)	$m(t) = (pe^t + 1 - p)^n$
Geometric	$p(y) = (1-p)^{y-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$m(t) = p e^t \frac{1}{1 - e^t (1 - p)}$
Poisson	$p(y) = \frac{\lambda^y}{y!} e^{-\lambda}$	$\hat{\lambda}$	λ	$m(t) = e^{\lambda(e^t-1)^{TT}}$
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}$	$\frac{\theta_1+\theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$m(t) = \begin{cases} \frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}, & \text{if } t \neq 0\\ 1 & \text{if } t = 0 \end{cases}$
Std. Normal	$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$	0	1	$m(t) = e^{\frac{t^2}{2}}$
Normal	$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$	μ	σ^2	$m(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}$	β	β^2	$m(t) = rac{1}{1-eta t}$
Gamma	$f(y) = \frac{y^{\alpha-1}e^{-y/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$	lphaeta	$lphaeta^2$	$m(t) = rac{1}{(1-eta t)^{lpha}}$

Multivariate Probability Distributions

We live in a multivariate world...

NORMAL VITAL SIGNS IN ADULTS

CORE TEMPERATURE	98.6°F (37°C)
HEART RATE	60–100 beats per minute
RESPIRATORY RATE	12–18 breaths per minute
BLOOD OXYGEN	95–100%
BLOOD PRESSURE	120/80 mm Hg

healthline

Illustration by Wenzdai Figueroa

Mary Lai Salvaña, Ph.D.

We live in a multivariate world...

Figure 1 Remote sensing of the climate system. Remote sensing is carried out by sensors aboard different platforms, including plane, boat and Argo floats. Ground-based instruments are also used, for example, sun spectral radiometers measure solar radiation. However, satellite remote sensing is capable of providing more frequent and repetitive coverage over a large area than other observation means. Figure courtesy of R. He, Hainan University.

Source: https://doi.org/10.1038/nclimate1908

Mary Lai Salvaña, Ph.D

UConn STAT 3375Q

We live in a multivariate world...

Fig. 17. Spatial images of the trivariate dataset on October 1, 2009 (after mean removal) on 116, 100 locations over the Arabian Sea.

Source: Salvaña, M. L. O., Abdulah, S., Huang, H., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2021). High

performance multivariate spatial modeling for geostatistical data on manycore systems. IEEE Transactions on Parallel and

Distributed Systems, 32(11), 2719-2733.

Mary Lai Salvaña, Ph.D.

We live in a multivariate world...

Source: https://doi.org/10.1101/091926

Mary Lai Salvaña, Ph.D.

We live in a multivariate world...

Analyses of genetic correlations among externalizing traits.

Source: https://doi.org/10.1101/2020.10.16.342501

Mary Lai Salvaña, Ph.D

We live in a multivariate world...

fMRI data showing how different tasks activate different nodes of the brain.

Source: https://doi.org/10.1177/0956797620916786

Mary Lai Salvaña, Ph.D

We live in a multivariate world...

The plot reveals the right trade off between ball velocity and angle.

Source: https://fivethirtyeight.com/features/the-new-science-of-hitting/

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 15 21 / 55

We live in a multivariate world...

Colored images can be represented by three color channels namely red, green and blue.

Source: https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km

Mary Lai Salvaña, Ph.D.

UConn STAT 3375Q

Introduction to Mathematical Statistics I Lec 15 22 / 55

We live in a multivariate world...

A graphical model of how stock prices are influenced by other factors.

Source: https://www.causact.com/joint-distributions-tell-you-everything

We live in a multivariate world...

Gold And Silver Correlation

We live in a multivariate world...

We live in a multivariate world...

We live in a multivariate world...

We live in a multivariate world...

Interest Rates And Stock Market Correlation

Recall the Univariate Gaussian PDF:

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

Multivariate challenge: How will this look like with two random variables? Bivariate Gaussian PDF:

$$f(y_1, y_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left\{\left(\frac{y_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{y_1-\mu_1}{\sigma_1}\right)\left(\frac{y_2-\mu_2}{\sigma_2}\right) + \left(\frac{y_2-\mu_2}{\sigma_2}\right)^2\right\}}$$

- μ_1 and σ_1^2 are the mean and variance, respectively, of Y_1 ,
- μ_2 and σ_2^2 are the mean and variance, respectively, of Y_2 ,
- $\sigma_{12} = \rho \sigma_1 \sigma_2$ is the covariance of Y_1 and Y_2 , where ρ is the correlation coefficient

Univariate \rightarrow Bivariate (Discrete)

Univariate \rightarrow Bivariate (Continuous)

Definition: Joint PMF for Discrete Random Variables

Let Y_1, Y_2, \ldots, Y_n be discrete random variables. The *joint probability* mass function (PMF) for Y_1, Y_2, \ldots, Y_n is given by

$$p(y_1, y_2, \ldots, y_n) = P(Y_1 = y_1, Y_2 = y_2, \cdots, Y_n = y_n),$$

for $-\infty < y_1, y_2, \ldots, y_n < \infty$.

 \triangleright $p(y_1, y_2, \dots, y_n)$ gives the probability of the following event:

$$\{Y_1 = y_1\} \cap \{Y_2 = y_2\} \cap \ldots \cap \{Y_n = y_n\}.$$

The joint PMF can be summarized/described by a table.

		у							
	$X \setminus Y$	1	2	3	4				
	1	P(X=1, Y=1)	P(X=1,Y=2)	P(X=1, Y=3)	P(X=1, Y=4)				
	2	P(X=2, Y=1)	P(X=2,Y=2)	P(X=2,Y=3)	P(X=2, Y=4)				
×	3	P(X = 3, Y = 1)	P(X = 3, Y = 2)	P(X = 3, Y = 3)	P(X = 3, Y = 4)				
	4	P(X=4,Y=1)	P(X=4,Y=2)	P(X=4,Y=3)	P(X=4,Y=4)				

Example 1:

Roll two dice. Let X and Y be the value on the first and second die, respectively. Write the joint probability table of X and Y. Solution:

- ► The sample space of X and Y is {1,2,3,4,5,6}. Thus, let x, y = 1,2,3,4,5,6.
- We know that

 $P(X = x, Y = y) = P(X = x)P(Y = y) = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right) = \frac{1}{36}.$

▶ Thus, the joint probability table of X and Y is as follows:

		у							
$X \setminus Y$	1	2	3	4	5	6			
1	1/36	1/36	1/36	1/36	1/36	1/36			
2	1/36	1/36	1/36	1/36	1/36	1/36			
3	1/36	1/36	1/36	1/36	1/36	1/36			
4	1/36	1/36	1/36	1/36	1/36	1/36			
5	1/36	1/36	1/36	1/36	1/36	1/36			
6	1/36	1/36	1/36	1/36	1/36	1/36			

Example 2:

Roll two dice. Let X be the value on the first die and let T be the total on both dice. Write the joint probability table of X and T. Solution:

- Let x = 1, 2, 3, 4, 5, 6 and $t = 2, 3, \dots, 12$.
- ► Let Y be the value on the second die and Y takes on values $1 \le y \le 6$. P(X = x, T = t) = P(X = x, Y = t - x) = P(X = x)P(Y = t - x) $= \left(\frac{1}{6}\right)\left(\frac{1}{6}\right) = \frac{1}{36}$, for $1 \le t - x \le 6 \Rightarrow 1 + x \le t \le 6 + x$.
- Thus, the joint probability table of X and T is as follows:

							t					
	$X \setminus T$	2	3	4	5	6	7	8	9	10	11	12
	1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
	2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
	3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
×	4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
	5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
	6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36

Theorem: Properties of Joint PMFs

If Y_1, Y_2, \ldots, Y_n are discrete random variables with joint PMF $p(y_1, y_2, \ldots, y_n)$, then

1 $p(y_1, y_2, ..., y_n) \ge 0$, for all $y_1, y_2, ..., y_n$.

2 $\sum_{y_1, y_2, \dots, y_n} p(y_1, y_2, \dots, y_n) = 1$, where the sum is over all values (y_1, y_2, \dots, y_n) that are assigned nonzero probabilities.

Example 3: Consider X, Y with the following joint PMF p(x, y):

		у					
	X ackslash Y	1	2	3	4		
	1	1/16	0	1/8	1/16		
	2	1/32	1/32	1/4	0		
х	3	0	1/8	1/16	1/16		
	4	1/16	1/32	1/16	1/32		

a Is the PMF above valid?

Solution:

Check that the following properties are satisfied:

▶
$$p(x, y) \ge 0$$
 for all x and y.
▶ $\sum_{x=1}^{4} \sum_{y=1}^{4} p(x, y) = 1.$

Example 3: Consider X, Y with the following joint PMF p(x, y):

b Find P(X = Y).

Solution:

$$P(X = Y) = p(1,1) + p(2,2) + p(3,3) + p(4,4)$$

= 1/16 + 1/32 + 1/16 + 1/32
= 0.1875.

Example 4: The joint distribution p(x, y) of X (number of cars) and Y (number of buses) per signal cycle at a traffic signal is given by:

			у	
	$X \setminus Y$	0	1	2
	0	0.025	0.015	0.010
	1	0.050	0.030	0.020
х	2	0.125	0.075	0.050
	3	0.150	0.090	0.060
	4	0.100	0.060	0.040
	5	0.050	0.030	0.020

a Is the PMF above valid?

Solution:

Check that the following properties are satisfied:

▶
$$p(x, y) \ge 0$$
 for all x and y.
▶ $\sum_{x=0}^{5} \sum_{y=0}^{2} p(x, y) = 1.$

Example 4: The joint distribution p(x, y) of X (number of cars) and Y (number of buses) per signal cycle at a traffic signal is given by:

			у	
	$X \setminus Y$	0	1	2
	0	0.025	0.015	0.010
	1	0.050	0.030	0.020
х	2	0.125	0.075	0.050
	3	0.150	0.090	0.060
	4	0.100	0.060	0.040
	5	0.050	0.030	0.020

b Find
$$P(X = Y)$$
.

Solution:

$$P(X = Y) = p(0,0) + p(1,1) + p(2,2)$$

= 0.025 + 0.030 + 0.050
= 0.105.

Example 5: Let X be a coin flip and Y be a die. Find the joint PMF. Solution:

- The sample space of X is $\{0, 1\}$.
- ► The sample space of *Y* is {1, 2, 3, 4, 5, 6}.
- We know that

$$P(X = x, Y = y) = P(X = x)P(Y = y) = (\frac{1}{2})(\frac{1}{6}) = \frac{1}{12}.$$

The joint PMF therefore is

		у							
	X ackslash Y	1	2	3	4	5	6		
	0	1/12	1/12	1/12	1/12	1/12	1/12		
X	1	1/12	1/12	1/12	1/12	1/12	1/12		

Or written as an equation:

$$p(x,y) = \frac{1}{12}, x = 0, 1, y = 1, 2, 3, 4, 5, 6.$$

40 / 55

Example 6: Let X be a coin flip and Y be a die. Define $A = \{X + Y = 3\}$. Find P(A). Solution:

Recall the joint probability table from previous slide:

		у						
	$X \setminus Y$	1	2	3	4	5	6	
	0	1/12	1/12	1/12	1/12	1/12	1/12	
X	1	1/12	1/12	1/12	1/12	1/12	1/12	

$$P(A) = \sum_{(x,y)\in A} p(x,y)$$

= $p(0,3) + p(1,2)$
= $\frac{1}{12} + \frac{1}{12}$
= $\frac{1}{6}$.

Example 7: Let X be a coin flip and Y be a die. Define $B = {\min(X, Y) = 1}$. Find P(B). Solution:

Recall the joint probability table from previous slide:

		у							
	$X \setminus Y$	1	2	3	4	5	6		
V	0	1/12	1/12	1/12	1/12	1/12	1/12		
	1	1/12	1/12	1/12	1/12	1/12	1/12		

$$P(B) = \sum_{(x,y)\in B} p(x,y)$$

= $p(1,1) + p(1,2) + p(1,3) + p(1,4) + p(1,5) + p(1,6)$
= $\frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$
= $\frac{1}{2}$.

Definition: Joint CDF

Let Y_1, Y_2, \ldots, Y_n be (discrete or continuous) random variables. The *joint* cumulative distribution function (CDF) for Y_1, Y_2, \ldots, Y_n is

$$F(y_1, y_2, \ldots, y_n) = P(Y_1 \leq y_1, Y_2 \leq y_2, \cdots, Y_n \leq y_n),$$

for $-\infty < y_1, y_2, \ldots, y_n < \infty$.

▶ $F(y_1, y_2, ..., y_n)$ gives the probability of the following event:

$$\{Y_1\leq y_1\}\cap\{Y_2\leq y_2\}\cap\ldots\cap\{Y_n\leq y_n\}.$$

Joint Cumulative Distribution Function (Disc./Cont.)

Theorem: Properties of Joint CDFs

• If Y_1, Y_2, \ldots, Y_n are random variables with joint CDF $F(y_1, y_2, \ldots, y_n)$, then

$$F(-\infty, -\infty, \dots, -\infty) = F(y_1, -\infty, \dots, -\infty) = F(-\infty, y_2, \dots, -\infty) = F(-\infty, -\infty, \dots, y_n) = 0.$$

$$P(\infty,\infty,\ldots,\infty) = 1.$$

Condition 1 tells us that

$$P(\{Y_1 \le -\infty\} \cap \{Y_2 \le -\infty\} \cap \ldots \cap \{Y_n \le -\infty\})$$

$$= P(\{Y_1 \le -\infty\} \cap \{Y_2 \le y_2\} \cap \ldots \cap \{Y_n \le -\infty\})$$

$$\vdots$$

$$= P(\{Y_1 \le -\infty\} \cap \{Y_2 \le -\infty\} \cap \ldots \cap \{Y_n \le y_n\}) = 0.$$

Condition 2 tells us that

 $P(\{Y_1 \leq \infty\} \cap \{Y_2 \leq \infty\} \cap \ldots \cap \{Y_n \leq \infty\}) = 1.$

Mary Lai Salvaña, Ph.D.

UConn STAT 3375Q

Introduction to Mathematical Statistics I Lec 15

Joint Cumulative Distribution Function (Discrete)

Example 8: Recall the joint probability for X, Y in Example 1. Compute F(3.5, 4).

Solution:

F(3.5, 4) = P(X ≤ 3.5, Y ≤ 4). We can visualize this event as the shaded cells in the table:

		у							
	$X \setminus Y$	1	2	3	4	5	6		
	1	1/36	1/36	1/36	1/36	1/36	1/36		
	2	1/36	1/36	1/36	1/36	1/36	1/36		
	3	1/36	1/36	1/36	1/36	1/36	1/36		
х	4	1/36	1/36	1/36	1/36	1/36	1/36		
	5	1/36	1/36	1/36	1/36	1/36	1/36		
	6	1/36	1/36	1/36	1/36	1/36	1/36		

Adding up the probabilities, we get $F(3.5, 4) = 12 \times \frac{1}{36} = \frac{1}{3}$.

Definition: Joint PDF for Continuous Random Variables

Let Y_1, Y_2, \ldots, Y_n be continuous random variables with joint CDF $F(y_1, y_2, \ldots, y_n)$. If there exists a nonnegative function $f(y_1, y_2, \ldots, y_n)$, such that

$$F(y_1, y_2, \ldots, y_n) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} \cdots \int_{-\infty}^{y_n} f(t_1, t_2, \ldots, t_n) dt_1 dt_2 \cdots dt_n,$$

for $-\infty < y_1, y_2, \ldots, y_n < \infty$, then Y_1, Y_2, \ldots, Y_n are said to be *jointly* continuous random variables. The function $f(y_1, y_2, \ldots, y_n)$ is called the *joint probability density function (PDF)*.

Theorem: Properties of Joint PDFs

If $f(y_1, y_2, ..., y_n)$ is a joint density function for $Y_1, Y_2, ..., Y_n$, then **1** $f(y_1, y_2, ..., y_n) \ge 0$, for all $y_1, y_2, ..., y_n$. **2** $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(y_1, y_2, ..., y_n) dy_1 dy_2 \cdots dy_n = 1$.

Example 9:

Suppose X and Y both take values in [0, 1] with uniform density f(x, y) = 1. Visualize the event X > Y and find its probability. Solution:

- ▶ The event *X* > *Y* corresponds to the region in the unit square where the *x* values are greater than the *y* values.
- Use the line y = x as a guide to find the region corresponding to the event X > Y.

Example 9:

Suppose X and Y both take values in [0, 1] with uniform density f(x, y) = 1. Visualize the event X > Y and find its probability. Solution:

• Another way to compute P(X > Y):

Example 10:

Suppose X and Y have the joint PDF:

$$f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}$$

a Is this is a valid PDF?

Solution:

- f(x, y) is nonnegative everywhere.
- We need to check whether f(x, y) integrates to 1.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{???}^{???} \int_{???}^{???} 6x^2 y dx dy$$

 KEY QUESTION: What are the bounds of integration? (cont'd next slide...)

Example 10:

Suppose X and Y have the joint PDF:

$$f(x,y) = egin{cases} 6x^2y, & 0 \leq x \leq y, & x+y \leq 2, \ 0, & ext{elsewhere.} \end{cases}$$

a Is this is a valid PDF?

Solution:

KEY QUESTION: What are the bounds of integration?

Example 10:

Suppose X and Y have the joint PDF:

$$f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}$$

a ls this is a valid PDF? Check whether $\int \int f(x, y) dx dy = 1$. Solution:

$$\int_{0}^{1} \int_{x}^{2-x} 6x^{2} y dy dx = \int_{0}^{1} 6x^{2} \frac{y^{2}}{2} \Big|_{x}^{2-x} dx$$

$$= \int_{0}^{1} 6x^{2} \frac{(2-x)^{2}-x^{2}}{2} dx$$

$$= \int_{0}^{1} 6x^{2} \frac{4-4x+x^{2}-x^{2}}{2} dx$$

$$= \int_{0}^{1} 6x^{2} (2-2x) dx$$

$$= \int_{0}^{1} 6x^{2} (1-x) dx$$
Beta function: $B(\alpha, \beta) = \int_{0}^{1} y^{\alpha-1} (1-y)^{\beta-1} dy = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

$$= 12B(3,2) = 12 \frac{\Gamma(3)\Gamma(2)}{\Gamma(5)}$$

$$= 12 \frac{211}{41} = 1.$$

Example 10:

Suppose X and Y have the joint PDF:

$$f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}$$

• What is the probability that X + Y is less than 1? Solution:

Questions?

Homework Exercises: 4.139, 4.141, 4.142, 4.143, 4.181 Solutions will be discussed this Friday by the TA.