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Quiz 4 Review Exercises Solutions
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Problem 1

Suppose the grades on this quiz is normally distributed with a mean score
of 70 points and standard deviation of 10 points. Furthermore, suppose |
decide to give the top 10% a bonus of 5 points. What should be the cutoff
score to merit the bonus points?

Solution:
We want to find the cutoff score x such that
P(X > x) =0.10.

This is equivalent to finding the cutoff score x such that

P(@zﬂ) = 0.10
g g

:>P(ZZX;“) — 0.10

:>1—P(Z<X;M) — 010

;»P(Z<X_“) — 0.90.
g

(cont’d next slide)
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Problem 1

Suppose the grades on this quiz is normally distributed with a mean score
of 70 points and standard deviation of 10 points. Furthermore, suppose |
decide to give the top 10% a bonus of 5 points. What should be the cutoff

score to merit the bonus points?
Solution:

From the Z-table, P(Z < 1.28) =~ 0.9. This means that

X—p
ag

1.28.

Solving for x and replacing = 70 and o = 10 (given), we have

x—170
= 1.2
10 8
=x—-70 = 128
=x = 82.8.

Thus, the cutoff score for the bonus points is 82.8.

O
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Problem 2

Let X have MGF given by

1 2
m(t) = get - §e2t, t e R.

O What is the distribution of X?

Solution:

Matching the MGF above to the MGF formula
m(t) = E(eX) = >, €™ p(x), we know that the MGF above
corresponds to a discrete random variable with PMF:

i, ifx=1,
p(x) =13 ifx=2
0, elsewhere.

(cont’d next slide)
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Problem 2

Let X have MGF given by

1 2
m(t) = et + e, teR.

3

® Find the expected value and variance of X.

Solution:

Finding the expected value:

E(X)
Finding the variance:
m//(t)

E(X*) = m"(0)

V(X)

Mary Lai Salvafia, Ph.D.
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/ 1t 42t
t) = = z
m'(t) 3e—&—3e
1,420 _5
3e —|—3e =3
1., 8
3¢ T3¢
L o,820_9_
3e +3e —3—3

O
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Problem 3

Verify that the standard normal PDF

1
$(z) = —F=e 2, —00<z<o0,

V2r

I\)‘NN

is a valid PDF.

Solution:

e oo 1 2 © q 2
/ ¢(Z)dZ = T 2dz= 2/ e 2dz  since
—oo 0

——e
oo V2T V2T
1 oo

2
-1 —Z
= 2 z e ?2zdz multiply a factor of 1

V2 Jo

1 > -
= 2—— 2t e dt Lett=22/2= dt = zdz
= v

1 1 1 1 1
tte tdt:—/ tZe tdt
0

22 v2 Jo NG
1

ges

= r(1/2) Recall the Gamma function: () = / 1%

VT
1

= 7\/7? Recall properties of the Gamma function: I'(1/2)

NG

0

= 1. Thus, the standard normal PDF is a valid PDF. []
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Problem 4

Suppose Y ~ N(u,0?). Find the expected value of the area of the
rectangle below.
el

Solution:

Given: Y ~ N(u,0?), L=3|Y|, W =|Y|.

Formula for area of rectangle: A= L x W.

Thus,

E(A) = EQ@IYIx|Y])

- 3E( Y2) linearity property of expectation
= 3[\/( Y) + {E( Y)}z] variance formula
= 3(0-2 + /,1/2) given D
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Problem 5

Suppose that X has the Gamma distribution with parameters a and .
Let ¢ be a positive constant. Show that cX has the Gamma distribution
with parameters o and cf.

Solution:
We can use the MGF to solve this problem. The MGF of ¢X is

mcx(t) = E(eth> def'n of MGF
_ E(e(tc)X)

— mX(Ct) def’'n of MGF isolate the random variable X

1

1
= Since X ~ Gam(«, ), MGF of Gamma: m(t)

(1 — ﬁct)o‘ ' - (1 3t)

Here ct is used instead of t

The MGF above is identical to the MGF of a Gamma distribution with
parameters a and ¢3. Thus, cX ~ Gam(a, cf3). O
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Moment Generating Functions

kth Moment: E(YK) = p

kth Central Moment: E{(Y — p)k} = pux

Moment Generating Function (MGF): m(t) = E (e*")
To obtain the kth moment:

’ dkm(t)
E(YSY=ypu, =
(V%) = 1k dtk ‘t:O

= m{(0).

MGF of a linear transformation: mux,(t) = e?*mx/(at)
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Moment Generating Functions

Distribution PMF/PDF ECY)  V(Y) MGF
Bernoulli ply) =p (1—p) p  p(l—p) m(t) =pef+1—p

ginomial  p() = (7)) p0L-p Y mp m(l-p)  m(e) = (et + 1 p)"

Geometric  p(y)=(1-p)"lp 5 5F m(t) = pe' g
Poisson p(y) = %eﬂ A N m(t) = eMe—1)
etfo _etty .
. 0,—01)2 — 5 if t ;ﬁ 0
Uniform V)= ato fgte Ll m(e) = {lt(ez CHA .
2 2
Std. Normal #(z) = \/%377 0 1 m(t) = e
y-w? 242
Normal fly) = \/2;79_ Er u o2 m(t) = ekt+5=
Exponential fly) = %e—y/[’ 8 32 m(t) = 1—1ﬂt
-
Gamma fly) = W af ap? m(t) = (17}31:)&
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Multivariate Probability Distributions
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

NORMAL VITAL SIGNS IN ADULTS

CORE TEMPERATURE 98.6°F (37°C)
HEART RATE 60-100 beats per minute
RESPIRATORY RATE 12-18 breaths per minute
BLOOD OXYGEN 95-100%

BLOOD PRESSURE 120/80 mm Hg

healthline

lllustration by Wenzdai Figuerca
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Hydrosphere

Figure 1| Remote sensing of the climate system. Remote sensing is carried out by sensors aboard different platforms, including plane, boat and Argo
floats. Ground-based instruments are also used, for example, sun spectral radiometers measure solar radiation. However, satellite remote sensing is
capable of providing more frequent and repetitive coverage over a large area than other observation means . Figure courtesy of R. He, Hainan University.
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https://doi.org/10.1038/nclimate1908

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

U Component V Component Temperature
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Fig. 17. Spatial images of the trivariate dataset on October 1, 2009 (after
mean removal) on 116, 100 locations over the Arabian Sea.
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

<«— Samples—>»
14,202 genes x 8555 samples
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https://doi.org/10.1101/091926

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Mental & B

Neurological
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Analyses of genetic correlations among externalizing traits.
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https://doi.org/10.1101/2020.10.16.342501

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

fMRI data showing how different tasks activate different nodes of the brain.
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https://doi.org/10.1177/0956797620916786

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

The sweet spot
Scoring value (LWTS) of batted balls based on launch angle
and speed off the bat, 2015 MLB

Fly balls

Launch angle

Exit velocity

e

sou

The plot reveals the right trade off between ball velocity and angle.
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https://fivethirtyeight.com/features/the-new-science-of-hitting/

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

RGB Image

10000

Colored images can be represented by three color channels namely red, green and blue.
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https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Interest Rate

A graphical model of how stock prices are influenced by other factors.
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https://www.causact.com/joint-distributions-tell-you-everything

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Gold And Silver Correlation

1980 2000
Year
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https://centerpointsecurities.com/interconnectedness-of-markets/

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Mary Lai Salvafia, Ph.D.

Price

Oil And Stock Market Correlation

1990 2000 2008
Year
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https://centerpointsecurities.com/interconnectedness-of-markets/

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Natural Gas And Oil Correlation

Price

Time
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Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Agricultural And Oil Correlation

Price

Soybeans

Time
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https://centerpointsecurities.com/interconnectedness-of-markets/

Multivariate Probability Distributions: Introduction

We live in a multivariate world...

Interest Rates And Stock Market Correlation

ks

1990 2000 2010
Year
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https://centerpointsecurities.com/interconnectedness-of-markets/

Multivariate Probability Distributions: Introduction

univariate bivariate trivariate multivariate

PME D(Y) = P() = P(Ly.y) = -+ =D %)
poF  f(y) = f(y,y) = f(y,5%y) = - = f(y,....5)
coF F(y) =>F(yy)=Fy%y) = ~ —F(y,...y)

Recall the Univariate Gaussian PDF:
1 _-w?
fy) = et

V2mo?

Multivariate challenge: How will this look like with two random variables?

Bivariate Gaussian PDF:

N2 _ B L
) — Lt () () () (22}
2ro100/1 — p?
w1 and o2 are the mean and variance, respectively, of Y1,

112 and 03 are the mean and variance, respectively, of Y2,

012 = poios is the covariance of Y; and Y, where p is the correlation coefficient
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Univariate — Bivariate (Discrete)

A (o)

pls) "
I‘ | | 10 | ﬂ

N (9)+ (91>+P(y3> A :
Pm . P(I\\:P(X‘)9>+P(Xuyl>+’)(xwys>
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Univariate — Bivariate (Continuous)

re{acXebceye 4}

)

re{ceyed)

£y)

A
dy

P(R=] 1t

p\\ ”f )y ddx

(SLOCT IR VY BERYATO N |ntroduction to Mathematica | Statistics | Lec 15 31/55




Joint Probability Mass Function (Discrete)

Definition: Joint PMF for Discrete Random Variables

Let Y1, Yo,..., Y, be discrete random variables. The joint probability
mass function (PMF) for Y1, Ya,..., Y, is given by

p(yi,y2,.- s yn) =P(Yi=y1,Yo=yo,- -+, Yn = yn),

for —oo < y1,¥2,...,¥n < 00.

p(y1,y2, ..., Vn) gives the probability of the following event:
{Yl :yl}ﬁ{Yg:yg}ﬂ...ﬂ{Y,,:y,,}.

The joint PMF can be summarized/described by a table.

y
X\Y 1 2 3 4
1 |PX=1Y=1) PX=1Y=2) PX=1Y=3) PX=1Y=4)
L2 | P(X=2Y=1) P(X=2Y=2) P(X=2Y=3) P(X=2Y=4)
3 | P(X=3Y=1) P(X=3Y=2) PX=3Y=3) P(X=3Y=4)
4 | P(X=4Y=1) P(X=4Y=2) PX=4Y=3) PX=4Y=4)
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Joint Probability Mass Function (Discrete)

Example 1:

Roll two dice. Let X and Y be the value on the first and second die,

respectively. Write the joint probability table of X and Y.
Solution:
The sample space of X and Y is {1,2,3,4,5,6}.
Thus, let x,y =1,2,3,4,5,6.
We know that
PX=x,Y=y)=P(X=x)P(Y =y)= (%) (%) = %.
Thus, the joint probability table of X and Y is as follows:

y
X\Y 1 2 3 4 5 6

1/36 1/36 1/36 1/36 1/36 1/36
1/36 1/36 1/36 1/36 1/36 1/36
1/36 1/36 1/36 1/36 1/36 1/36
1/36 1/36 1/36 1/36 1/36 1/36
1/36 1/36 1/36 1/36 1/36 1/36
1/36 1/36 1/36 1/36 1/36 1/36

DO WN
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Joint Probability Mass Function (Discrete)

Example 2:

Roll two dice. Let X be the value on the first die and let T be the total on
both dice. Write the joint probability table of X and T.

Solution:

Let x=1,2,3,4,5,6 and t =2,3,...,12.
Let Y be the value on the second die and Y takes on values 1 <y < 6.
PX=x,T=t) = PX=x,Y=t—x)=PX=x)P(Y=t-—x)

= (1> (1):i7 for1<t—x<6=1+x<t<6+x.

6 6 36

Thus, the joint probability table of X and T is as follows:

t

X\T| 2 3 4 5 6 7 8 9 10 11 12
1 [1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 0
2 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0
.3 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0
4 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0
5 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0

6 0 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36

Mary Lai Salvafia, Ph.D.

UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 15

—
34 / 55



Joint Probability Mass Function (Discrete)

Theorem: Properties of Joint PMFs

If Y1, Ya,..., Y, are discrete random variables with joint PMF
P(}’laYZa o 7_yn), then

® p(yi,y2,.-.,yn) >0, forall y1,ys,....yn.

(2 Zyl — p(y1,¥2,.-.,yn) = 1, where the sum is over all values
Y1, Y2, ---,Yn) that are assigned nonzero probabilities.
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Joint Probability Mass Function (Discrete)

Example 3: Consider X, Y with the following joint PMF p(x, y):

X\Y 1

y
2 3 4

1/16
1/32
0
1/16

WO N R

0 1/8 1/16
1/32 1/4 0
1/8 1/16 1/16
1/32 1/16 1/32

® Is the PMF above valid?

Solution:

Check that the following properties are satisfied:

p(x,y) >0 for all x and y.

Zizl Zi:l p(x,y) =1.

Mary Lai Salvafia, Ph.D.
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Joint Probability Mass Function (Discrete)

Example 3: Consider X, Y with the following joint PMF p(x, y):

y
X\Y 1 2 3 4

0 1/8 1/16

y 1/32 1/4 0
0o 1/8 1/16
1/16  1/32  1/16

O Find P(X = Y).

Solution:
P(X=Y) = p(1,1)+p(2,2) + p(3,3) + p(4,4)

1/16 4+ 1/32 +1/16 + 1/32
= 0.1875.
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Joint Probability Mass Function (Discrete)

Example 4: The joint distribution p(x, y) of X (number of cars) and Y

(number of buses) per signal cycle at a traffic signal is given by:

X

Y

0

y
1

2

\
0
1
2
3
4

5

0.025
0.050
0.125
0.150
0.100
0.050

0.015
0.030
0.075
0.090
0.060
0.030

0.010
0.020
0.050
0.060
0.040
0.020

@O Is the PMF above valid?

Solution:

Check that the following properties are satisfied:
p(x,y) >0 for all x and y.

Zi:o 2)2/:0 p(x,y) =1.

UConn STAT 3375Q
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Joint Probability Mass Function (Discrete)

Example 4: The joint distribution p(x, y) of X (number of cars) and Y
(number of buses) per signal cycle at a traffic signal is given by:

y
X\Y | o 1 2
0
1
2
3 | 0150 0.090 0.060
4 | 0100 0.060 0.040
5 | 0050 0.030 0.020

© Find P(X = Y).
Solution:
P(X=Y) = p(0,0)+p(1,1) + p(2,2)
= 0.025+ 0.030 + 0.050
0.105.
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Joint Probability Mass Function (Discrete)

Example 5: Let X be a coin flip and Y be a die. Find the joint PMF.
Solution:

The sample space of X is {0,1}.

The sample space of Y is {1,2,3,4,5,6}.

We know that

PX=x,Y=y)=P(X=x)P(Y =y)=(3) (§) = &
The joint PMF therefore is

X\Y | 1 2 3 4 5 6
0 | 1/12 1/12 1/12 1/12 1/12 1/12
1 | 1/12 1/12 1/12 1/12 1/12 1/12

Or written as an equation:

1
p(Xv.y) = 57 XZOvlv y:1)2)3)47556'

X
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Joint Probability Mass Function (Discrete)

Example 6: Let X be a coin flip and Y be a die.
Define A= {X + Y = 3}. Find P(A).

Solution:

Recall the joint probability table from previous slide:

X\Y | 1 2

y
3 4 5 6

P(A) =

Mary Lai Salvafia, Ph.D.

0 |1/12 1/12 1/12
1| 1/12 1/12 1/12

UConn STAT 3375Q

/12 1/12
1/12 1/12

> p(xy)

(x,y)EA

p(0,3) + p(1,2)
L1
1212

1

6.
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Joint Probability Mass Function (Discrete)

Example 7: Let X be a coin flip and Y be a die.
Define B = {min(X, Y) = 1}. Find P(B).

Solution:
Recall the joint probability table from previous slide:
y
X\Y 1 2 3 4 5 6
« 0 1/12 1/12 1/12 1/12 1/12 1/12
1
P(B) = Y p(xy)
(x,y)eB

= p(1,1)+p(1,2) + p(1,3) + p(1,4) + p(1,5) + p(1,6)
B 1+1+1+1+1+1
12 12 12 12 12 12

—
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Joint Cumulative Distribution Function (Disc./Cont.)

Definition: Joint CDF

Let Y1, Y2,..., Y, be (discrete or continuous) random variables. The joint
cumulative distribution function (CDF) for Y1, Ya,..., Yy, is

F(}/lv)/2a---,}’n):P(Y1 S}/1,Y2§)/2,"' 7Yn§yn)a

for —co < y1,¥2,...,¥n < 00.

F(yi.v2.....vn) gives the probability of the following event:

M <ntn{Ya<wytn...n{Y, <y}

Mary Lai Salvafia, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 15 43 / 55



Joint Cumulative Distribution Function (Disc./Cont.)

Theorem: Properties of Joint CDFs
@ If Y1,Y5,...,Y, are random variables with joint CDF
F(y1,y2,---,¥n), then

F(—o00,—00,...,—00) = F(y1,—00,...,—00) =

F(—o0,y2,...,—00) =-+- = F(—00,—00,...,¥n) = 0.

® F(o0,00,...,00) =1.

Condition 1 tells us that
PH{Y: < —oo}n{Ya < —oco}n...Nn{Ys < —o0})
= P{("i<—oco}n{Y2<y}Nn...n{Y, < —00})

= P{(1<—oo}n{Ya< —oo}Nn...N{Y,<yn})=0.
Condition 2 tells us that
P{Yi <oo}n{Ya<oo}n...n{Y,<oo})=1
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Joint Cumulative Distribution Function (Discrete)

Example 8: Recall the joint probability for X, Y in Example 1. Compute

F(3.5,4).

Solution:

F(3.5,4) = P(X < 3.5, Y < 4). We can visualize this event as the
shaded cells in the table:

1/36 1/36
1/36 1/36
1/36 1/36

1/36
1/36
1/36
1/36 1/36 1/36
1/36 1/36 1/36
1/36 1/36 1/36

6

1/36
1/36
1/36
1/36
1/36

Adding up the probabilities, we get F(3.5,4) = 12 x % =

Mary Lai Salvafia, Ph.D.
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Joint Probability Density Function (Continuous)

Definition: Joint PDF for Continuous Random Variables

Let Y1, Ya,..., Y, be continuous random variables with joint CDF
F(y1,Y2,---,yn). If there exists a nonnegative function f(y1,y2,...,Yn),
such that

Y1 2 Yn
F(y1,y2,---,¥n) —/ / / f(t1, ta, ..., ty)dtidty - - - dtp,
—0oQ —00 —0o0

for —oco < y1,¥2,...,¥n < o0, then Y1, Ya,..., Y, are said to be jointly
continuous random variables. The function f(yi1,y»,...,yn) is called the
Joint probability density function (PDF).
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Joint Probability Density Function (Continuous)

Theorem: Properties of Joint PDFs

If f(y1,y2,.-.,¥n) is a joint density function for Y1, Y2, ..., Yy, then
(1) f(yl,yg,...,yn) >0, for all y1,y2,...,¥n.
2] f f f (y17y27--'7Yn)dy1d}/2"‘d}/n=1-

Mary Lai Salvafia, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 15 47 / 55



Joint Probability Density Function (Continuous)

Example 9:

Suppose X and Y both take values in [0, 1] with uniform density

f(x,y) = 1. Visualize the event X > Y and find its probability.

Solution:
The event X > Y corresponds to the region in the unit square where the x values
are greater than the y values.
Use the line y = x as a guide to find the region corresponding to the event X > Y.

$8) j
- B J
. X
3D Visualization 2D Visualization

PX>Y) = [ Jieyxsvy Fxoy)dxdy = I fyl ldxdy = folxﬁdy =
2
ha=ndr=(y-%5)k=1-3=4
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Joint Probability Density Function (Continuous)

Example 9:
Suppose X and Y both take values in [0, 1] with uniform density
f(x,y) = 1. Visualize the event X > Y and find its probability.
Solution:

Another way to compute P(X > Y):

£6c)
N
1
PX>Y) = 5 % volume of cube
- 1! Vol. cube = 1
L — 5. Ol. cube
| J
i OR
1 P(X >Y) = vol. of triangular prism
A‘ = Area of base x height
Yy=x
- . 1
Probability of X > Y is the volume of = 5 Areaofbase = 1/2, height =1

the triangular prism.

Mary Lai Salvafia, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 15 49 / 55



Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

6x’y, 0<x<y, x+y<2,
f(x,y)=
0, elsewhere.

@ Is this is a valid PDF?
Solution:
f(x,y) is nonnegative everywhere.

We need to check whether f(x, y) integrates to 1.

/ / f(x,y)dxdy = // ”6X2ydxdy

KEY QUESTION: What are the bounds of integration?
(cont'd next slide...)
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Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

6x%y, 0<x<y, x+y<2
f(x,y) =
0, elsewhere.

© s this is a valid PDF?
Solution:
» KEY QUESTION: What are the bounds of integration?

X
3:34
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Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

F(x,y) 6x%y, 0<x<y, x+y<2,
x,y) =
Y 0, elsewhere.

® Is this is a valid PDF? Check whether [ [ #(x,y)dxdy = 1.
Solution:

2—x
fol ff_x 6x°ydydx = fol 6x2ﬁ x o

Y *f 6x2 2= 4
_fo 62 4= 4x+2x —x% gy
= [, 6x*(2 — 2x)dx
= fol 6x22(1 — x)dx
=12 fol x*(1 = x)dx

- ‘\;y_: " Beta function: B(c = /O (1 — v)ﬁ ldy W
R 42 =12B(3,2) = 12”?22; )
=122 =1. O
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Joint Probability Density Function (Continuous)

Example 10:
Suppose X and Y have the joint PDF:

F(x,y) 6x%y, 0<x<y, x+y<2,
X,y) =
Y 0, elsewhere.

® What is the probability that X + Y is less than 17

Solution:
P(X+Y <1) = [/* [ 6x?ydydx
- ) 1—x
J Y =f01/2 6X2y7 . dx
‘ _ri/2 2 (1—x)%—x?
“, Ox———dx
21—2x+x°—x
= [} 6x2iml o g
; : fl/2 3x? (1 —2x)dx
- LSS 1/2 3x% — 6x3dx
, ™ e ",
1/2
=X _ 3 6 4 _ 1 3 (1\4
i =X "z ‘0 =5-30)
b _ 1 3 1
=F " mT @ O

Mary Lai Salvafia, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 15 53 / 55



Questions?
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Homework Exercises: 4.139, 4.141, 4.142, 4.143, 4.181
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