STAT 3375Q: Introduction to Mathematical Statistics I Lecture 15: Multivariate Probability Distributions

Mary Lai Salvaña, Ph.D.

Department of Statistics University of Connecticut

March 20, 2024

Outline

1 [Quiz 4 Review Exercises Solutions](#page-2-0)

- **2** [Previously...](#page-10-0)
	- **[Moment Generating Functions](#page-11-0)**

3 [Multivariate Probability Distributions](#page-13-0)

- [Introduction](#page-14-0)
- **In [Joint Probability Mass Function \(Discrete\)](#page-31-0)**
- ▶ [Joint Cumulative Distribution Function \(Discrete/Continuous\)](#page-42-0)
- **EXED** [Joint Probability Density Function \(Continuous\)](#page-45-0)

Quiz 4 Review Exercises Solutions

Suppose the grades on this quiz is normally distributed with a mean score of 70 points and standard deviation of 10 points. Furthermore, suppose I decide to give the top 10% a bonus of 5 points. What should be the cutoff score to merit the bonus points?

Solution:

 \triangleright We want to find the cutoff score x such that

 $P(X > x) = 0.10$.

 \triangleright This is equivalent to finding the cutoff score x such that

$$
P\left(\frac{X-\mu}{\sigma} \ge \frac{X-\mu}{\sigma}\right) = 0.10
$$

\n
$$
\Rightarrow P\left(Z \ge \frac{X-\mu}{\sigma}\right) = 0.10
$$

\n
$$
\Rightarrow 1 - P\left(Z < \frac{X-\mu}{\sigma}\right) = 0.10
$$

\n
$$
\Rightarrow P\left(Z < \frac{X-\mu}{\sigma}\right) = 0.90.
$$

(cont'd next slide)

Suppose the grades on this quiz is normally distributed with a mean score of 70 points and standard deviation of 10 points. Furthermore, suppose I decide to give the top 10% a bonus of 5 points. What should be the cutoff score to merit the bonus points?

Solution:

▶ From the Z-table, $P (Z < 1.28) \approx 0.9$. This means that

$$
\frac{x-\mu}{\sigma} = 1.28.
$$

Solving for x and replacing $\mu = 70$ and $\sigma = 10$ (given), we have

$$
\frac{x-70}{10} = 1.28
$$

\n
$$
\Rightarrow x-70 = 12.8
$$

\n
$$
\Rightarrow x = 82.8.
$$

▶ Thus, the cutoff score for the bonus points is 82.8.

Let X have MGF given by

$$
m(t) = \frac{1}{3}e^{t} + \frac{2}{3}e^{2t}, \quad t \in \mathbb{R}.
$$

 \bullet What is the distribution of X?

Solution:

 \triangleright Matching the MGF above to the MGF formula $m(t) = E({\rm e}^{tX}) = \sum_{\rm y} {\rm e}^{t{\rm x}} \rho({\rm x}),$ we know that the MGF above corresponds to a discrete random variable with PMF:

$$
p(x) = \begin{cases} \frac{1}{3}, & \text{if } x = 1, \\ \frac{2}{3}, & \text{if } x = 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

(cont'd next slide)

Let X have MGF given by

$$
m(t) = \frac{1}{3}e^{t} + \frac{2}{3}e^{2t}, \quad t \in \mathbb{R}.
$$

 \bullet Find the expected value and variance of X. Solution:

 \blacktriangleright Finding the expected value:

$$
m'(t) = \frac{1}{3}e^{t} + \frac{4}{3}e^{2t}
$$

$$
E(X) = m'(0) = \frac{1}{3}e^{(0)} + \frac{4}{3}e^{2(0)} = \frac{5}{3}.
$$

 \blacktriangleright Finding the variance:

$$
m''(t) = \frac{1}{3}e^{t} + \frac{8}{3}e^{2t}
$$

\n
$$
E(X^{2}) = m''(0) = \frac{1}{3}e^{(0)} + \frac{8}{3}e^{2(0)} = \frac{9}{3} = 3.
$$

\n
$$
V(X) = E(X^{2}) - \{E(X)\}^{2} = 3 - \left(\frac{5}{3}\right)^{2} = \frac{2}{9}.
$$

Verify that the standard normal PDF

$$
\phi(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}, \quad -\infty < z < \infty,
$$

is a valid PDF. Solution:

$$
\int_{-\infty}^{\infty} \phi(z) dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 2 \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \text{ since } \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}
$$
 is an even function
\n
$$
= 2 \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} z^{-1} e^{-\frac{z^2}{2}} z dz \text{ multiply a factor of 1}
$$
\n
$$
= 2 \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} (\sqrt{2t})^{-1} e^{-t} dt \text{ Let } t = z^2/2 \Rightarrow dt = z dz. \Rightarrow z = \sqrt{2t}.
$$
\n
$$
= 2 \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} t^{\frac{1}{2}-1} e^{-t} dt
$$
\n
$$
= \frac{1}{\sqrt{\pi}} \Gamma(1/2) \text{ Recall the Gamma function: } \Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy.
$$
\n
$$
= \frac{1}{\sqrt{\pi}} \sqrt{\pi} \text{ Recall properties of the Gamma function: } \Gamma(1/2) = \sqrt{\pi}.
$$
\n
$$
= 1. \text{ Thus, the standard normal PDF is a valid PDF. } \square
$$
\n
$$
= 1. \text{ Thus, the standard normal PDF is a valid PDF. } \square
$$

Suppose $Y \sim \mathcal{N}(\mu, \sigma^2).$ Find the expected value of the area of the rectangle below.

Solution:

- ► Given: $Y \sim \mathcal{N}(\mu, \sigma^2)$, $L = 3|Y|$, $W = |Y|$.
- **Formula for area of rectangle:** $A = L \times W$.

 \blacktriangleright Thus,

$$
E(A) = E(3|Y| \times |Y|)
$$

= 3E(Y²)
= 3[V(Y) + {E(Y)}²]
= 3[V(Y) + {E(Y)}²]
= 3(\sigma² + \mu²).
given

Suppose that X has the Gamma distribution with parameters α and β . Let c be a positive constant. Show that cX has the Gamma distribution with parameters α and $c\beta$.

Solution:

We can use the MGF to solve this problem. The MGF of cX is

$$
m_{cX}(t) = E(e^{tcX})_{def'n of MGF}
$$

\n
$$
= E(e^{(tc)X})
$$

\n
$$
= m_X(ct)_{def'n of MGF}^{(tot) isolate the random variable X}
$$

\n
$$
= \frac{1}{(1 - \beta ct)^{\alpha}}.
$$
 Since $X \sim \text{Gam}(\alpha, \beta)$, MGF of Gamma: $m(t) = \frac{1}{(1 - \beta t)^{\alpha}}$.
\nHere *ct* is used instead of *t*.

The MGF above is identical to the MGF of a Gamma distribution with parameters α and c β . Thus, $cX \sim \text{Gam}(\alpha, c\beta)$.

Previously...

Moment Generating Functions

- \blacktriangleright k th Moment: $E(Y^k) = \mu'_k$ k
- $▶$ *k*th Central Moment: $E\{(Y-\mu)^k\} = \mu_k$
- \triangleright Moment Generating Function (MGF): $m(t) = E(e^{tY})$
- \triangleright To obtain the *k*th moment:

$$
E(Y^{k}) = \mu_{k}^{'} = \frac{d^{k} m(t)}{dt^{k}} \Big|_{t=0} = m_{Y}^{(k)}(0).
$$

 \triangleright MGF of a linear transformation: $m_{aX+b}(t) = e^{bt} m_X(at)$

Moment Generating Functions

Multivariate Probability Distributions

We live in a multivariate world.

NORMAL VITAL SIGNS IN ADULTS

healthline

Illustration by Wenzdai Figueroa

We live in a multivariate world.

Figure 1 | Remote sensing of the climate system. Remote sensing is carried out by sensors aboard different platforms, including plane, boat and Argo floats. Ground-based instruments are also used, for example, sun spectral radiometers measure solar radiation. However, satellite remote sensing is capable of providing more frequent and repetitive coverage over a large area than other observation means. Figure courtesy of R. He, Hainan University,

Source:<https://doi.org/10.1038/nclimate1908>

Mary Lai Salvaña, Ph.D. **UConn STAT 3375Q** [Introduction to Mathematical Statistics I Lec 15](#page-0-0) 16 / 55

We live in a multivariate world...

Fig. 17. Spatial images of the trivariate dataset on October 1, 2009 (after mean removal) on 116, 100 locations over the Arabian Sea.

Source: Salvaña, M. L. O., Abdulah, S., Huang, H., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2021). High

performance multivariate spatial modeling for geostatistical data on manycore systems. IEEE Transactions on Parallel and

Distributed Systems, 32(11), 2719-2733.

We live in a multivariate world.

Source:<https://doi.org/10.1101/091926>

We live in a multivariate world...

Analyses of genetic correlations among externalizing traits.

Source:<https://doi.org/10.1101/2020.10.16.342501>

We live in a multivariate world...

fMRI data showing how different tasks activate different nodes of the brain.

Source:<https://doi.org/10.1177/0956797620916786>

We live in a multivariate world.

The plot reveals the right trade off between ball velocity and angle.

Source:<https://fivethirtyeight.com/features/the-new-science-of-hitting/>

Mary Lai Salvaña, Ph.D. **UConn STAT 3375Q** [Introduction to Mathematical Statistics I Lec 15](#page-0-0) 21 / 55

We live in a multivariate world...

Colored images can be represented by three color channels namely red, green and blue.

Source: [https://dev.to/sandeepbalachandran/machine-learning-going- furthur-with-cnn-part-2-41km](https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km)

We live in a multivariate world...

A graphical model of how stock prices are influenced by other factors.

Source:<https://www.causact.com/joint-distributions-tell-you-everything>

We live in a multivariate world...

Gold And Silver Correlation

We live in a multivariate world...

We live in a multivariate world.

We live in a multivariate world...

We live in a multivariate world.

Interest Rates And Stock Market Correlation

$$
\begin{array}{llll} \text{univariate} & \text{bivariate} & \text{trivariate} \\ \text{PMF} & p(y) \Longrightarrow p(y_{i},y_{j}) \Longrightarrow p(y_{i},y_{j},y_{j}) \Longrightarrow \cdots & \Longrightarrow p(y_{i},...,y_{n}) \\ \\ \text{PDF} & f(y) \Longrightarrow f(y_{i},y_{j}) \Longrightarrow f(y_{i},y_{j},y_{j}) \Longrightarrow \cdots & \Longrightarrow f(y_{i},...,y_{n}) \\ \\ \text{CDF} & F(y) \Longrightarrow F(y_{i},y_{j}) \Longrightarrow F(y_{i},y_{j},y_{j}) \Longrightarrow \cdots & \Longrightarrow F(y_{i},...,y_{n}) \end{array}
$$

Recall the Univariate Gaussian PDF:

$$
f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}
$$

Multivariate challenge: How will this look like with two random variables? Bivariate Gaussian PDF:

$$
f(y_1, y_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left\{\left(\frac{y_1-\mu_1}{\sigma_1}\right)^2-2\rho\left(\frac{y_1-\mu_1}{\sigma_1}\right)\left(\frac{y_2-\mu_2}{\sigma_2}\right)+\left(\frac{y_2-\mu_2}{\sigma_2}\right)^2\right\}},
$$

- \blacktriangleright μ_1 and σ_1^2 are the mean and variance, respectively, of Y_1 ,
- \blacktriangleright μ_2 and σ_2^2 are the mean and variance, respectively, of Y_2 ,
- $\triangleright \sigma_{12} = \rho \sigma_1 \sigma_2$ is the covariance of Y₁ and Y₂, where ρ is the correlation coefficient

Univariate \rightarrow Bivariate (Discrete)

Univariate \rightarrow Bivariate (Continuous)

Definition: Joint PMF for Discrete Random Variables

Let Y_1, Y_2, \ldots, Y_n be discrete random variables. The joint probability *mass function (PMF)* for Y_1, Y_2, \ldots, Y_n is given by

$$
p(y_1, y_2, \ldots, y_n) = P(Y_1 = y_1, Y_2 = y_2, \cdots, Y_n = y_n),
$$

for $-\infty < y_1, y_2, \ldots, y_n < \infty$.

 $p(y_1, y_2, \ldots, y_n)$ gives the probability of the following event:

$$
\{Y_1 = y_1\} \cap \{Y_2 = y_2\} \cap \ldots \cap \{Y_n = y_n\}.
$$

The joint PMF can be summarized/described by a table.

Example 1:

Roll two dice. Let X and Y be the value on the first and second die, respectively. Write the joint probability table of X and Y . Solution:

- \triangleright The sample space of X and Y is $\{1, 2, 3, 4, 5, 6\}$. Thus, let $x, y = 1, 2, 3, 4, 5, 6$.
- \triangleright We know that

$$
P(X = x, Y = y) = P(X = x)P(Y = y) = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right) = \frac{1}{36}.
$$
Thus the joint probability table of X and Y is a following.

 \blacktriangleright Thus, the joint probability table of X and Y is as follows:

Example 2:

Roll two dice. Let X be the value on the first die and let T be the total on both dice. Write the joint probability table of X and T . Solution:

- ▶ Let $x = 1, 2, 3, 4, 5, 6$ and $t = 2, 3, ..., 12$.
- ▶ Let Y be the value on the second die and Y takes on values $1 \le y \le 6$. $P(X = x, T = t) = P(X = x, Y = t - x) = P(X = x)P(Y = t - x)$ $=\begin{pmatrix} \frac{1}{c} \end{pmatrix}$ 6 \setminus (1) 6 $= \frac{1}{2}$ $\frac{1}{36}$, for $1 \le t - x \le 6 \Rightarrow 1 + x \le t \le 6 + x$.
- \triangleright Thus, the joint probability table of X and T is as follows:

Theorem: Properties of Joint PMFs

If Y_1, Y_2, \ldots, Y_n are discrete random variables with joint PMF $p(y_1, y_2, \ldots, y_n)$, then

1 $p(y_1, y_2, \ldots, y_n) \geq 0$, for all y_1, y_2, \ldots, y_n .

 $\bullet \, \sum_{y_1, y_2, ..., y_n} \rho(y_1, y_2, \ldots, y_n) = 1,$ where the sum is over all values (y_1, y_2, \ldots, y_n) that are assigned nonzero probabilities.

Example 3: Consider X, Y with the following joint PMF $p(x, y)$:

a Is the PMF above valid?

Solution:

Check that the following properties are satisfied:

$$
p(x, y) \ge 0 \text{ for all } x \text{ and } y.
$$

$$
p(x, y) \ge 0 \text{ for all } x \text{ and } y.
$$

$$
p(x, y) = 1.
$$

Example 3: Consider X, Y with the following joint PMF $p(x, y)$:

y X\Y 1 2 3 4 x 1 1/16 0 1/8 1/16 2 1/32 1/32 1/4 0 3 0 1/8 1/16 1/16 4 1/16 1/32 1/16 1/32

b Find $P(X = Y)$.

Solution:

$$
P(X = Y) = p(1,1) + p(2,2) + p(3,3) + p(4,4)
$$

= 1/16 + 1/32 + 1/16 + 1/32
= 0.1875.

Example 4: The joint distribution $p(x, y)$ of X (number of cars) and Y (number of buses) per signal cycle at a traffic signal is given by:

a Is the PMF above valid?

Solution:

Check that the following properties are satisfied:

$$
\varphi(x, y) \ge 0 \text{ for all } x \text{ and } y.
$$

$$
\varphi(x, y) \ge 0 \text{ for all } x \text{ and } y.
$$

Example 4: The joint distribution $p(x, y)$ of X (number of cars) and Y (number of buses) per signal cycle at a traffic signal is given by:

$$
\bullet
$$
 Find $P(X = Y)$.

Solution:

$$
P(X = Y) = p(0,0) + p(1,1) + p(2,2)
$$

= 0.025 + 0.030 + 0.050
= 0.105.

Example 5: Let X be a coin flip and Y be a die. Find the joint PMF. Solution:

- \blacktriangleright The sample space of X is $\{0,1\}$.
- ▶ The sample space of Y is $\{1, 2, 3, 4, 5, 6\}$.
- \triangleright We know that

$$
P(X = x, Y = y) = P(X = x)P(Y = y) = \left(\frac{1}{2}\right)\left(\frac{1}{6}\right) = \frac{1}{12}.
$$

▶ The joint PMF therefore is

 \triangleright Or written as an equation:

$$
p(x,y) = \frac{1}{12}
$$
, $x = 0,1$, $y = 1,2,3,4,5,6$.

Example 6: Let X be a coin flip and Y be a die. Define $A = \{X + Y = 3\}$. Find $P(A)$. Solution:

Recall the joint probability table from previous slide:

$$
P(A) = \sum_{(x,y)\in A} p(x,y)
$$

= $p(0,3) + p(1,2)$
= $\frac{1}{12} + \frac{1}{12}$
= $\frac{1}{6}$.

Example 7: Let X be a coin flip and Y be a die. Define $B = \{min(X, Y) = 1\}$. Find $P(B)$. Solution:

Recall the joint probability table from previous slide:

$$
P(B) = \sum_{(x,y)\in B} p(x,y)
$$

= $p(1,1) + p(1,2) + p(1,3) + p(1,4) + p(1,5) + p(1,6)$
= $\frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$
= $\frac{1}{2}$.

Definition: Joint CDF

Let Y_1, Y_2, \ldots, Y_n be (discrete or continuous) random variables. The joint cumulative distribution function (CDF) for Y_1, Y_2, \ldots, Y_n is

$$
F(y_1, y_2, \ldots, y_n) = P(Y_1 \le y_1, Y_2 \le y_2, \cdots, Y_n \le y_n),
$$

for $-\infty < y_1, y_2, \ldots, y_n < \infty$.

 \blacktriangleright $F(y_1, y_2, \ldots, y_n)$ gives the probability of the following event:

$$
\{Y_1\leq y_1\}\cap\{Y_2\leq y_2\}\cap\ldots\cap\{Y_n\leq y_n\}.
$$

Joint Cumulative Distribution Function (Disc./Cont.)

Theorem: Properties of Joint CDFs

 \bigcap If Y_1, Y_2, \ldots, Y_n are random variables with joint CDF $F(y_1, y_2, \ldots, y_n)$, then

$$
F(-\infty,-\infty,\ldots,-\infty)=F(y_1,-\infty,\ldots,-\infty)=
$$

$$
F(-\infty,y_2,\ldots,-\infty)=\cdots=F(-\infty,-\infty,\ldots,y_n)=0.
$$

$$
\bullet \ \mathsf{F}(\infty,\infty,\ldots,\infty)=1.
$$

 \triangleright Condition 1 tells us that

$$
P({Y_1 \leq -\infty} \cap {Y_2 \leq -\infty} \cap ... \cap {Y_n \leq -\infty})
$$

=
$$
P({Y_1 \leq -\infty} \cap {Y_2 \leq y_2} \cap ... \cap {Y_n \leq -\infty})
$$

:
=
$$
P({Y_1 \leq -\infty} \cap {Y_2 \leq -\infty} \cap ... \cap {Y_n \leq y_n}) = 0.
$$

 \triangleright Condition 2 tells us that

 $P({Y_1 \leq \infty} \cap {Y_2 \leq \infty} \cap \ldots \cap {Y_n \leq \infty}) = 1.$

Mary Lai Salvaña, Ph.D. **UConn STAT 3375Q** [Introduction to Mathematical Statistics I Lec 15](#page-0-0) 44 / 55

Joint Cumulative Distribution Function (Discrete)

Example 8: Recall the joint probability for X, Y in Example 1. Compute $F(3.5, 4)$.

Solution:

▶ $F(3.5, 4) = P(X \le 3.5, Y \le 4)$. We can visualize this event as the shaded cells in the table:

 \blacktriangleright Adding up the probabilities, we get $F(3.5,4)=12\times\frac{1}{36}=\frac{1}{3}$ $\frac{1}{3}$.

Definition: Joint PDF for Continuous Random Variables

Let Y_1, Y_2, \ldots, Y_n be continuous random variables with joint CDF $F(y_1, y_2, \ldots, y_n)$. If there exists a nonnegative function $f(y_1, y_2, \ldots, y_n)$, such that

$$
F(y_1, y_2, \ldots, y_n) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} \cdots \int_{-\infty}^{y_n} f(t_1, t_2, \ldots, t_n) dt_1 dt_2 \cdots dt_n,
$$

for $-\infty < y_1, y_2, \ldots, y_n < \infty$, then Y_1, Y_2, \ldots, Y_n are said to be jointly continuous random variables. The function $f(y_1, y_2, \ldots, y_n)$ is called the joint probability density function (PDF).

Theorem: Properties of Joint PDFs

If $f(y_1, y_2, \ldots, y_n)$ is a joint density function for Y_1, Y_2, \ldots, Y_n , then **10** $f(y_1, y_2, \ldots, y_n) \ge 0$, for all y_1, y_2, \ldots, y_n . **2** $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(y_1, y_2, \ldots, y_n) dy_1 dy_2 \cdots dy_n = 1.$

Example 9:

Suppose X and Y both take values in [0, 1] with uniform density $f(x, y) = 1$. Visualize the event $X > Y$ and find its probability. Solution:

- If The event $X > Y$ corresponds to the region in the unit square where the x values are greater than the y values.
- ▶ Use the line $y = x$ as a guide to find the region corresponding to the event $X > Y$.

Example 9:

Suppose X and Y both take values in $[0, 1]$ with uniform density $f(x, y) = 1$. Visualize the event $X > Y$ and find its probability. Solution:

Another way to compute $P(X > Y)$:

Example 10:

Suppose X and Y have the joint PDF:

$$
f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

a Is this is a valid PDF?

Solution:

- \blacktriangleright $f(x, y)$ is nonnegative everywhere.
- \triangleright We need to check whether $f(x, y)$ integrates to 1.

$$
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy = \int_{???}^{???}\int_{???}^{???}6x^2y dxdy
$$

▶ KEY QUESTION: What are the bounds of integration? (cont'd next slide...)

Example 10:

Suppose X and Y have the joint PDF:

$$
f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

a Is this is a valid PDF?

Solution:

▶ KEY QUESTION: What are the bounds of integration?

Example 10:

Suppose X and Y have the joint PDF:

$$
f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

a Is this is a valid PDF? Check whether $\int \int f(x, y) dx dy = 1$. Solution:

Example 10:

Suppose X and Y have the joint PDF:

$$
f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}
$$

 \bullet What is the probability that $X + Y$ is less than 1? Solution:

$$
P(X + Y < 1) = \int_{0}^{1/2} \int_{x}^{1-x} 6x^{2}ydydx
$$

\n
$$
= \int_{0}^{1/2} 6x^{2} \frac{y^{2}}{2} \Big|_{x}^{1-x} dx
$$

\n
$$
= \int_{0}^{1/2} 6x^{2} \frac{(1-x)^{2}-x^{2}}{2} dx
$$

\n
$$
= \int_{0}^{1/2} 6x^{2} \frac{1-2x+x^{2}-x^{2}}{2} dx
$$

\n
$$
= \int_{0}^{1/2} 3x^{2}(1-2x)dx
$$

\n
$$
= \int_{0}^{1/2} 3x^{2} - 6x^{3}dx
$$

\n
$$
= x^{3} - \frac{6}{4}x^{4} \Big|_{0}^{1/2} = \frac{1}{8} - \frac{3}{2} (\frac{1}{2})^{4}
$$

\n
$$
= \frac{1}{8} - \frac{3}{32} = \frac{1}{32}.
$$

Questions?

Homework Exercises: 4.139, 4.141, 4.142, 4.143, 4.181 Solutions will be discussed this Friday by the TA.