STAT 3375Q: Introduction to Mathematical Statistics I

Lecture 16: Marginal and Conditional Probability Distributions; Independent Random Variables

Mary Lai Salvaña, Ph.D.

Department of Statistics University of Connecticut

March 25, 2024

Outline

- 1 Previously...
 - Multivariate Probability Distributions
- 2 Marginal Probability Distributions
 - Marginal CDF
 - Marginal PMF
 - Marginal PDF
- 3 Conditional Probability Distributions
 - Conditional PMF
 - Conditional CDF
 - Conditional PDF
- 4 Independent Random Variables

Previously...

Multivariate extensions of univariate concepts:

Joint PMF (Discrete):

$$p(y_1, y_2, \dots, y_n) = P(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n)$$

Joint CDF (Discrete/Continuous):

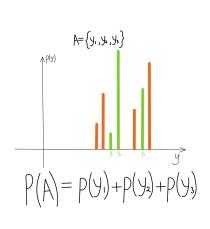
$$F(y_1, y_2, ..., y_n) = P(Y_1 \le y_1, Y_2 \le y_2, ..., Y_n \le y_n)$$

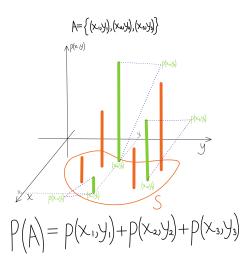
► Joint PDF (Continuous):

$$F(y_1, y_2, ..., y_n) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} ... \int_{-\infty}^{y_n} f(t_1, t_2, ..., t_n) dt_1 dt_2 ... dt_n,$$

Univariate → Bivariate (Discrete)

Distribution: From 2D to 3D point mass...

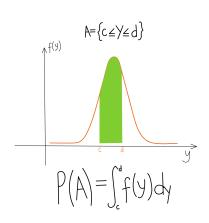


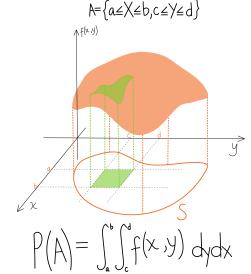


Univariate → Bivariate (Continuous)

Density: From a 2D curve to a 3D surface...

Probability: From area to volume...





Multivariate Probability Distributions: Joint PMF

The joint PMF can be summarized/described by a table where

- columns: possible values of Y
- rows: possible values of X
- \triangleright cells: probabilities of every possible combination of X & Y values

Example 3 in Lec 15:

			У							
	$X \backslash Y$	1	2	3	4					
	1	1/16	0	1/8	1/16					
.,	2	1/32	1/32	1/4	0					
X	3	0	1/8	1/16	1/16					
	4	1/16	1/32	1/16	1/32					

What is
$$P(X = Y)$$
?

$$P(X = Y) = p(1,1) + p(2,2) + p(3,3) + p(4,4)$$

= $1/16 + 1/32 + 1/16 + 1/32$
= 0.1875.

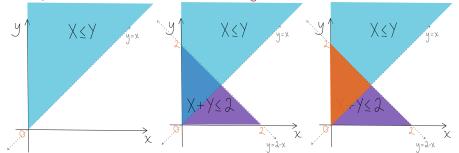
Multivariate Probability Distributions: Joint PDF

Example 10 in Lec 15:

Suppose X and Y have the joint PDF:

$$f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}$$

KEY QUESTION: What are the bounds of integration?



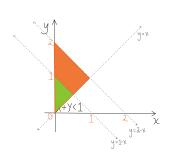
Multivariate Probability Distributions: Joint PDF

Example 10 in Lec 15:

Suppose X and Y have the joint PDF:

$$f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le y, & x+y \le 2, \\ 0, & \text{elsewhere.} \end{cases}$$

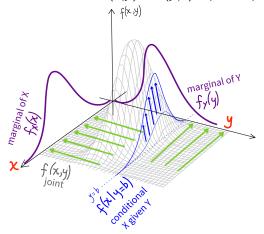
What is the probability that X + Y is less than 1?



P(X + Y < 1) =
$$\int_{???}^{???} \int_{???}^{???} 6x^2y dx dy$$

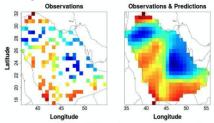
= $\int_0^{1/2} \int_x^{1-x} 6x^2y dy dx$
= $\int_0^{1/2} 6x^2 \frac{y^2}{2} \Big|_x^{1-x} dx$
= $\int_0^{1/2} 6x^2 \frac{(1-x)^2 - x^2}{2} dx$
= $\int_0^{1/2} 6x^2 \frac{(1-x)^2 - x^2}{2} dx$
= $\int_0^{1/2} 6x^2 \frac{1-2x+x^2-x^2}{2} dx$
= $\int_0^{1/2} 3x^2 (1-2x) dx$
= $\int_0^{1/2} 3x^2 - 6x^3 dx$
= $x^3 - \frac{6}{4}x^4 \Big|_0^{1/2} = \frac{1}{8} - \frac{3}{2} \left(\frac{1}{2}\right)^4$
= $\frac{1}{8} - \frac{3}{32} = \frac{1}{32}$.

- 3 types:
 - **b** joint distribution, f(x, y): probability of both RVs
 - ightharpoonup marginal distributions, $f_X(x)$ and $f_Y(y)$: probability of RV of interest
 - **conditional** distributions, f(x|y) or f(y|x): updated probability



Multivariate Probability Distributions: Importance

- Most important task in Statistics: PREDICTION
- For example:
 - ▶ Data: temperature measurements at 100 locations
 - ▶ Goal: Fill in missing measurements at 400 locations



- ► Step 1: Let **X** = temperature measurements at 100 locations. Let **Y** = missing measurements at 400 locations.
- ▶ Step 2: Assume a joint distribution for **X** and **Y**, f(x, y).
- Step 3: Estimate the parameters of the joint distribution using the marginal distribution of X, $f_X(x)$.
- Step 4: Predict the missing values \mathbf{Y} using the conditional distribution $f(\mathbf{y}|\mathbf{x})$.

Marginal Probability Distributions

Definition: Joint CDF → Marginal CDF (Discrete/Continuous)

Let Y_1 and Y_2 be random variables with joint CDF $F(y_1, y_2)$. The marginal CDF for Y_1 and Y_2 , respectively, are

$$F_1(y_1) = P(Y_1 \le y_1) = F(y_1, \infty),$$
 and $F_2(y_2) = P(Y_2 \le y_2) = F(\infty, y_2).$

Recall the joint CDF of Y_1 and Y_2 : $F(y_1, y_2) = P(\{Y_1 \le y_1\} \cap \{Y_2 \le y_2\})$

$$\stackrel{y_2 \to \infty}{\Longrightarrow} F(y_1, \infty) = P(\{Y_1 \le y_1\} \cap \{Y_2 \le \infty\})$$

$$= P(\{Y_1 \le y_1\} \cap \mathbb{R})$$

$$= P(Y_1 \le y_1) = F_1(y_1)$$

$$\stackrel{y_1 \to \infty}{\Longrightarrow} F(\infty, y_2) = P(\{Y_1 \le \infty\} \cap \{Y_2 \le y_2\})$$

$$= P(\mathbb{R} \cap \{Y_2 \le y_2\})$$

$$= P(Y_2 \le y_2) = F_2(y_2).$$

Definition: Joint PMF → Marginal PMF (Discrete)

Let Y_1 and Y_2 be jointly discrete random variables with joint PMF $p(y_1, y_2)$. The marginal PMF for Y_1 and Y_2 , respectively, are

$$p_1(y_1) = P(Y_1 = y_1) = \sum_{\text{all } y_2} p(y_1, y_2)$$

and

$$p_2(y_2) = P(Y_2 = y_2) = \sum_{\text{all } y_1} p(y_1, y_2).$$

- ► The marginal probability distribution is the probability distribution of one of the two variables ignoring the other.
- ▶ To get the marginal PMF of y_1 , sum over y_2 .
- ▶ To get the marginal PMF of y_2 , sum over y_1 .

Other Remarks:

- ▶ The marginal PMF of y_1 is free of y_2 .
- ▶ The marginal PMF of y_2 is free of y_1 .
- A marginal distribution is a compression of information where only information regarding the marginal variable is maintained.
- ► The process of obtaining the marginal distribution of one variable from the joint distribution is called marginalization.

Marginal PMF: Illustration

How to obtain the marginal PMF of X from this joint PMF of X and Y?

			у								
	$X \backslash Y$	1	2	3	4						
	1	p(1,1)	p(1,2)	p(1,3)	p(1, 4)						
.,	2	p(2,1)	p(2,2)	p(2,3)	p(2,4)						
X	3	p(3,1)	p(3,2)	p(3,3)	p(3,4)						
	4	p(4,1)	p(4,2)	p(4,3)	p(4,4)						

▶ Create a new column for the marginal PMF of X, $p_X(x)$.

			у								
	$X \backslash Y$	1	2	3	4	$p_X(x)$					
	1	p(1,1)	p(1,2)	p(1,3)	p(1,4)	$=p_X(1)$					
	2	p(2,1)	p(2,2)	p(2,3)	p(2,4)	$= p_X(2)$					
×	3	p(3,1)	p(3,2)	p(3,3)	p(3,4)	$= p_X(3)$					
	4	p(4,1)	p(4,2)	p(4,3)	p(4,4)	$=p_X(4)$					

Marginalization flattens a 2D table to 1D...

Marginal PMF: Illustration

How to obtain the marginal PMF of Y from this joint PMF of X and Y?

			у								
	$X \backslash Y$	1	2	3	4						
	1	p(1,1)	p(1,2)	p(1,3)	p(1,4)						
	2	p(2,1)	p(2,2)	p(2,3)	p(2,4)						
X	3	p(3,1)	p(3,2)	p(3,3)	p(3,4)						
	4	p(4,1)	p(4,2)	p(4,3)	p(4,4)						

► Create a new row for the marginal PMF of Y, $p_Y(y)$.

			у								
	$X \backslash Y$	1	2	3	4	$p_X(x)$					
	1	p(1,1)	p(1,2)	p(1,3)	p(1,4)	$= p_{X}(1)$					
	2	p(2,1)	p(2,2)	p(2,3)	p(2,4)	$= p_X(2)$					
^	3	p(3,1)	p(3,2)	p(3,3)	p(3,4)	$= p_X(3)$					
	4	p(4,1)	p(4,2)	p(4,3)	p(4,4)	$= p_X(4)$					
p	$p_Y(y)$	$= p_Y(1)$	$= p_{Y}(2)$	$= p_{Y}(3)$	$= p_Y(4)$						

Marginalization flattens a 2D table to 1D...

Example 1: (Recall Ex. 2 in Lec 15)

Roll two dice. Let X be the value on the first die and let T be the total on both dice. Compute the marginal PMFs of X and T. Solution:

From Ex. 2 in Lec 15, we have the joint PMF of X and T.

							t					
	$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
	1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
	2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
١	3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
×	4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
	5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
	6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36

Example 1: (Recall Ex. 2 in Lec 15)

Roll two dice. Let X be the value on the first die and let T be the total on both dice. Compute the marginal PMFs of X and T. Solution:

From Ex. 2 in Lec 15, we have the joint PMF of X and T.

							t					
	$X \setminus T$	2	3	4	5	6	7	8	9	10	11	12
	1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
	2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
.,	3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
X	4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
	5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
	6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36
P	$\sigma_T(t)$	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

The marginal PMF of X is: $p_X(x) = \frac{1}{6}, x = 1, 2, \dots, 6$.

The marginal PMF of
$$T$$
 is: $p_T(t) = \begin{cases} 1/36, & t = 2,12 \\ 1/18, & t = 3,11 \\ 1/12, & t = 4,10 \\ 1/9, & t = 5,9 \\ 5/36, & t = 6,8 \\ 1/6, & t = 7. \end{cases}$

Definition: Joint PDF → Marginal PDF (Continuous)

Let Y_1 and Y_2 be jointly continuous random variables with joint PDF $f(y_1, y_2)$. The marginal PDF for Y_1 and Y_2 , respectively, are

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$

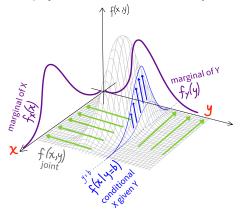
and

$$f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1.$$

- ▶ To get the marginal PDF of y_1 , integrate over y_2 .
- ▶ To get the marginal PDF of y_2 , integrate over y_1 .

Other Remarks: Suppose we have random variables X and Y.

- ▶ The marginal PDF of x is free of y.
 - ▶ Marginalization projects or flattens the 3D density to 2D onto the *x*-axis.
- ▶ The marginal PDF of y is free of x.
 - ▶ Marginalization projects or flattens the 3D density to 2D onto the *y*-axis.



Example 2:

Suppose (X, Y) takes values on the square $[0, 1] \times [1, 2]$ with joint PDF:

$$f(x,y) = \frac{8}{3}x^3y.$$

Find the marginal PDF of X and Y.

Solution:

► Computing the marginal PDF of X: Formula: $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$

$$f_X(x) = \int_1^2 \frac{8}{3} x^3 y dy = \frac{8}{3} x^3 \int_1^2 y dy = \frac{8}{3} x^3 \left(\frac{y^2}{2} \right) \Big|_1^2 = 4x^3.$$

Computing the marginal PDF of Y: Formula: $f_Y(y) = \int_{-\infty}^{\infty} f(x,y)dx$

$$f_Y(y) = \int_0^1 \frac{8}{3} x^3 y dx = \frac{8}{3} y \int_0^1 x^3 dx = \frac{8}{3} y \left(\frac{x^4}{4}\right) \Big|_0^1 = \frac{2}{3} y.$$

Example 3:

Suppose (X, Y) takes values on the unit square with joint PDF:

$$f(x,y) = \frac{3}{2}(x^2 + y^2).$$

What is P(X < 0.5)?

Solution:

We first need to compute the marginal PDF of X: Formula: $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$

$$f_X(x) = \int_0^1 \frac{3}{2} (x^2 + y^2) dy = \frac{3}{2} \left(x^2 y + \frac{y^3}{3} \right) \Big|_0^1 = \frac{3}{2} x^2 + \frac{1}{2}.$$

► Computing P(X < 0.5):

$$P(X < 0.5) = \int_{-\infty}^{0.5} f_X(x) dx = \int_{0}^{0.5} \frac{3}{2} x^2 + \frac{1}{2} dx = \left(\frac{x^3}{2} + \frac{x}{2}\right) \Big|_{0}^{0.5} = \frac{1}{16} + \frac{1}{4} = \frac{5}{16}.$$

Example 4:

Suppose (X, Y) is a bivariate Gaussian random variable with PDF:

$$f(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{\{(x-\mu_x)^2 + (y-\mu_y)^2\}}{2\sigma^2}}.$$

What is the marginal distribution of X? Solution:

We first need to find the marginal PDF of X: Formula: $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$

$$\begin{split} f_X(x) &= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma^2} e^{-\frac{\{(x-\mu_x)^2 + (y-\mu_y)^2\}}{2\sigma^2}} dy \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_x)^2}{2\sigma^2}} e^{-\frac{(y-\mu_y)^2}{2\sigma^2}} dy \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_x)^2}{2\sigma^2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_y)^2}{2\sigma^2}} dy \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_x)^2}{2\sigma^2}} (1). \quad \text{Gaussian PDF integrates to 1.} \end{split}$$

The marginal distribution of X is $\mathcal{N}(\mu_x, \sigma^2)$.

Conditional Probability Distributions

Conditional Probability Distributions

- Recall our discussion on conditional probability:
 - As you obtain additional information, how should you update probabilities of events?
 - Formula:

$$P(A|B) = \frac{\text{probability of events A and B both occurring}}{\text{probability of event B occurring}}$$
 $= \frac{P(A \cap B)}{P(B)}, \text{ provided } P(B) > 0.$

- Same principle applies to distributions:
 - ► conditional PMF: $p(y_1|y_2) = \frac{p(y_1,y_2)}{p_2(y_2)}$ ► conditional PDF: $f(y_1|y_2) = \frac{f(y_1,y_2)}{f_2(y_2)}$

 - conditional CDF: $F(y_1|y_2) = P(Y_1 < y_1|Y_2 = y_2)$
- Conditional distributions are used to model scenarios where the values of a subset of the random variables are known and the rest are missing or unknown.

Definition: Conditional PMF for Discrete Random Variables

Let Y_1 and Y_2 be jointly discrete random variables with joint PMF $p(y_1, y_2)$ and marginal PMFs $p_1(y_1)$ and $p_2(y_2)$. The conditional PMF of Y_1 given $Y_2 = y_2$ is

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)},$$

provided that $p_2(y_2) > 0$.

- ▶ To compute the conditional PMF, we need:
 - ightharpoonup joint PMF: $p(y_1, y_2)$
 - ▶ marginal PMF of the conditioning RV: $p_2(y_2)$

 $\mbox{conditional PMF} = \frac{\mbox{joint PMF}}{\mbox{marginal PMF of conditioning RV}}$

Example 5:

Suppose *X* and *Y* have the following joint PMF:

			у	
	$X \backslash Y$	0	1	2
	0	0.10	0.04	0.02
×	1	0.08	0.20	0.06
	2	0.06	0.14	0.30

Given that X = 1, determine the conditional PMF of Y. Solution:

$$p(0|1) = P(Y = 0|X = 1)$$

$$= \frac{P(Y = 0, X = 1)}{P(X = 1)}$$

$$= \frac{0.08}{P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 1, Y = 2)}$$

$$= \frac{0.08}{0.08 + 0.20 + 0.06}$$

$$= \frac{0.08}{0.08 + 0.20 + 0.06}$$
(cont'd next slide...)

Example 5:

Suppose *X* and *Y* have the following joint PMF:

			у	
	$X \backslash Y$	0	1	2
	0	0.10	0.04	0.02
x	1	0.08	0.20	0.06
	2	0.06	0.14	0.30

Given that X = 1, determine the conditional PMF of Y. Solution:

$$\begin{split} \rho(1|1) &= P(Y=1|X=1) \\ &= \frac{P(Y=1,X=1)}{P(X=1)} \\ &= \frac{0.20}{P(X=1,Y=0) + P(X=1,Y=1) + P(X=1,Y=2)} \\ &= \frac{0.20}{0.08 + 0.20 + 0.06} \\ &= \frac{0.20}{0.08 + 0.20 + 0.06} \\ &= \frac{0.20}{0.34} = 0.5882. \quad \text{(cont'd next slide...)} \end{split}$$

Example 5:

Suppose X and Y have the following joint PMF:

			у	
	$X \backslash Y$	0	1	2
	0	0.10	0.04	0.02
x	1	0.08	0.20	0.06
	2	0.06	0.14	0.30

Given that X = 1, determine the conditional PMF of Y. Solution:

$$p(2|1) = P(Y = 2|X = 1)$$

$$= \frac{P(Y = 2, X = 1)}{P(X = 1)}$$

$$= \frac{0.06}{P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 1, Y = 2)}{0.06 \cdot 0.10 \cdot 0.04 \cdot 0.02}$$

$$= \frac{0.06}{0.08 + 0.20 + 0.06} = \frac{0.06}{0.34} = 0.1765. \quad \text{(cont'd next slide...)}$$

Example 5:

Suppose X and Y have the following joint PMF:

			у	
	$X \backslash Y$	0	1	2
	0	0.10	0.04	0.02
×	1	0.08	0.20	0.06
	2	0.06	0.14	0.30

Given that X = 1, determine the conditional PMF of Y. Solution:

The conditional PMF of Y is

$$p(y|X=1) = \begin{cases} 0.2353, & \text{if } y = 0\\ 0.5882, & \text{if } y = 1\\ 0.1765, & \text{if } y = 2. \end{cases}$$

Conditional CDF

Definition: Conditional CDF for Continuous Random Variables

Let Y_1 and Y_2 be jointly continuous random variables with joint PDF $f(y_1, y_2)$. The conditional CDF of Y_1 given $Y_2 = y_2$ is

$$F(y_1|y_2) = P(Y_1 \le y_1|Y_2 = y_2).$$

Discrete Case:

$$F(y_1|y_2) = \frac{1}{p_2(y_2)} \sum_{t \le y_1} p(t, y_2)$$

Continuous Case:

$$F(y_1|y_2) = \frac{1}{f_2(y_2)} \int_{-\infty}^{y_1} f(t, y_2) dt$$

Conditional CDF

Example 6:

Suppose *X* and *Y* have the following joint PMF:

			у	
	$X \backslash Y$	0	1	2
	0	0.10	0.04	0.02
x	1	0.08	0.20	0.06
	2	0.06	0.14	0.30

What is
$$P(Y \le 1|X = 2)$$
? Solution:

$$P(Y \le 1|X = 2) = P(Y = 0|X = 2) + P(Y = 1|X = 2)$$

$$= \frac{P(Y = 0, X = 2)}{P(X = 2)} + \frac{P(Y = 1, X = 2)}{P(X = 2)}$$

$$= \frac{0.06 + 0.14}{P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 1, Y = 2)}$$

$$= \frac{0.06 + 0.14}{0.06 + 0.14 + 0.30} = \frac{0.20}{0.50} = 0.4. \quad \Box$$

Definition: Conditional PDF for Continuous Random Variables

Let Y_1 and Y_2 be jointly continuous random variables with joint PDF $f(y_1, y_2)$ and marginal PDFs $f_1(y_1)$ and $f_2(y_2)$. The conditional PDF of Y_1 given $Y_2 = y_2$ is

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)},$$

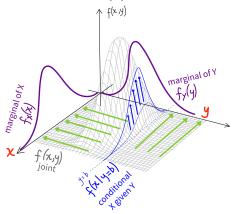
provided that $f_2(y_2) > 0$.

- ▶ To compute the conditional PDF, we need:
 - \triangleright joint PDF: $f(y_1, y_2)$
 - marginal PDF of the conditioning RV: $f_2(y_2)$

$$\mbox{conditional PDF} = \frac{\mbox{joint PDF}}{\mbox{marginal PDF of conditioning RV}}$$

Other Remarks: Suppose we have random variables X and Y.

The conditional density of X given Y = b is the 2D image of the 3D density at y = b, divided by $f_Y(b)$.



Example 7:

Let X and Y have the following joint density:

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2), & 0 \le x, y \le 1\\ 0, & \text{elsewhere.} \end{cases}$$

a Determine the conditional PDF of Y given X.

Solution:

$$f(y|x) = \frac{f(x,y)}{f_X(x)} \quad \text{conditional PDF formula}$$

$$= \frac{\frac{6}{5}(x+y^2)}{\int_0^1 f(x,y)dy} \quad \frac{\text{given}}{\text{marginal PDF formula: } f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy}$$

$$= \frac{\frac{6}{5}(x+y^2)}{\int_0^1 \frac{6}{5}(x+y^2)dy} = \frac{\frac{6}{5}(x+y^2)}{\frac{6}{5}(xy+\frac{y^3}{3})\Big|_0^1} = \frac{x+y^2}{x+\frac{1}{3}}.$$

Conditional PDF

Example 7:

Let X and Y have the following joint density:

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2), & 0 \le x, y \le 1\\ 0, & \text{elsewhere.} \end{cases}$$

b Find $P(Y \ge \frac{1}{2}|X = \frac{1}{3})$.

Solution: (to get the conditional prob., integrate the conditional PDF)

Use the conditional PDF from part a) and set $x = \frac{1}{3}$.

$$\begin{split} P\left(Y \geq \frac{1}{2} \middle| X = \frac{1}{3}\right) &= \int_{\frac{1}{2}}^{1} f(y | x = \frac{1}{3}) dy \\ &= \int_{\frac{1}{2}}^{1} \frac{\left(\frac{1}{3} + y^{2}\right)}{\left(\frac{1}{3} + \frac{1}{3}\right)} dy \quad \text{conditional PDF from part a) is } f(y | x) = \frac{x + y^{2}}{x + \frac{1}{3}} \\ &= \frac{1}{\frac{2}{3}} \int_{\frac{1}{2}}^{1} \frac{1}{3} + y^{2} dy = \frac{3}{2} \left(\frac{1}{3}y + \frac{y^{3}}{3}\right) \Big|_{\frac{1}{2}}^{1} \\ &= \frac{3}{2} \left\{ \left(\frac{1}{3} + \frac{1}{3}\right) - \left(\frac{1}{6} + \frac{1}{24}\right) \right\} = \frac{11}{16}. \quad \Box \end{split}$$

- Recall our discussion on independence:
 - ► Two events are said to be independent if knowing one occurs does not change the probability of the other occurring.
 - ► Any one of the following should hold:

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Otherwise, the events are said to be dependent.

► Same principle applies to random variables

Definition: Checking for Independence via CDF

Suppose Y_1 have CDF $F_1(y_1)$, Y_2 have CDF $F_2(y_2)$, and Y_1 and Y_2 have joint CDF $F(y_1, y_2)$. Then Y_1 and Y_2 are said to be *independent* if and only if

$$F(y_1, y_2) = F_1(y_1)F_2(y_2),$$

for every pair of real numbers (y_1, y_2) .

If Y_1 and Y_2 are not independent, they are said to be *dependent*.

- ▶ To check for independence, we need:
 - ightharpoonup joint CDF: $F(y_1, y_2)$
 - ightharpoonup marginal CDFs: $F_1(y_1)$, $F_2(y_2)$

Theorem: Checking for Independence via PMF (Discrete)

Let Y_1 and Y_2 be jointly discrete random variables with joint PMF $p(y_1, y_2)$ and marginal PMFs $p_1(y_1)$ and $p_2(y_2)$. Then Y_1 and Y_2 are independent if and only if

$$p(y_1, y_2) = p_1(y_1)p_2(y_2),$$

for every pair of real numbers (y_1, y_2) .

Example 8: (Recall Example 1 in Lecture 15)

Roll two dice. Let X and Y be the value on the first and second die, respectively. Are X and Y independent?

From Ex. 1 in Lec 15, we have the joint PMF of X and Y.

		у							
	$X \backslash Y$	1	2	3	4	5	6	$p_X(x)$	
	1	1/36	1/36	1/36	1/36	1/36	1/36	1/6	
	2	1/36	1/36	1/36	1/36	1/36	1/36	1/6	
	3	1/36	1/36	1/36	1/36	1/36	1/36	1/6	
X	4	1/36	1/36	1/36	1/36	1/36	1/36	1/6	
	5	1/36	1/36	1/36	1/36	1/36	1/36	1/6	
	6	1/36	1/36	1/36	1/36	1/36	1/36	1/6	
p	$p_Y(y)$	1/6	1/6	1/6	1/6	1/6	1/6	,	

Since every marginal probability is 1/6 and every cell contains 1/36, X and Y are independent.

Example 9: (Recall Example 2 in Lecture 15)

Roll two dice. Let X be the value on the first die and let T be the total on both dice. Are X and Y independent?

Solution:

From Ex. 2 in Lec 15, we have the joint PMF of X and T.

							t					
	$X \setminus T$	2	3	4	5	6	7	8	9	10	11	12
	1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
	2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
.,	3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
Х	4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
	5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
	6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36
$p_Y(y)$		1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

► Since most of the cell probabilities are not the product of the marginal probabilities, *X* and *Y* cannot be independent.

Theorem: Checking for Independence via PDF (Continuous)

Let Y_1 and Y_2 be jointly continuous random variables with joint PDF $f(y_1, y_2)$ and marginal PDFs $f_1(y_1)$ and $f_2(y_2)$. Then Y_1 and Y_2 are independent if and only if

$$f(y_1, y_2) = f_1(y_1)f_2(y_2),$$

for every pair of real numbers (y_1, y_2) .

Example 10:

Consider X and Y with the joint density:

$$f(x,y) = \begin{cases} x+y, & 0 < x, y < 1 \\ 0, & \text{elsewhere.} \end{cases}$$

Are X and Y independent?

Solution:

▶ Solving for the marginal PDF of X:

$$\begin{array}{lcl} f_X(x) & = & \displaystyle \int_{-\infty}^{\infty} f(x,y) dy & \text{marginal PDF formula} \\ \\ & = & \displaystyle \int_{0}^{1} x + y \ dy & \text{given} \\ \\ & = & \displaystyle \left(xy + \frac{y^2}{2} \right) \Big|_{0}^{1} = x + \frac{1}{2}, \quad 0 < x < 1. \end{array}$$

(cont'd next slide...)

Example 10:

Consider X and Y with the joint density:

$$f(x,y) = \begin{cases} x+y, & 0 < x, y < 1 \\ 0, & \text{elsewhere.} \end{cases}$$

Are X and Y independent?

Solution:

Solving for the marginal PDF of Y:

$$\begin{split} f_Y(y) &= \int_{-\infty}^{\infty} f(x,y) dx & \text{marginal PDF formula} \\ &= \int_{0}^{1} x + y \ dx & \text{given} \\ &= \left(\frac{x^2}{2} + xy\right) \Big|_{0}^{1} = \frac{1}{2} + y, \quad 0 < y < 1. \end{split}$$

(cont'd next slide...)

Example 10:

Consider X and Y with the joint density:

$$f(x,y) = \begin{cases} x+y, & 0 < x, y < 1 \\ 0, & \text{elsewhere.} \end{cases}$$

Are X and Y independent?

Solution:

▶ Checking if $f(x, y) = f_X(x)f_Y(y)$:

$$f_X(x)f_Y(y) = \left(x + \frac{1}{2}\right)\left(y + \frac{1}{2}\right)$$
$$= xy + \frac{1}{2}x + \frac{1}{2}y + \frac{1}{4}$$
$$\neq f(x, y).$$

► Therefore, X and Y are NOT independent.

Independent Random Variables: Via Conditioning

Independence means "conditioning does not change the distribution"...

Recall formula for conditional PDF:

$$f(y_1|y_2) = \frac{f(y_1,y_2)}{f_2(y_2)}$$

 $\Leftrightarrow f(y_1,y_2) = f(y_1|y_2)f_2(y_2).$

Recall the independence property via PDFs:

$$f(y_1, y_2) = f_1(y_1)f_2(y_2)$$

 $\Leftrightarrow f(y_1|y_2)f_2(y_2) = f_1(y_1)f_2(y_2)$
 $\Leftrightarrow f(y_1|y_2) = f_1(y_1).$

independence \iff conditional PDF = marginal PDF

Same principle applies to disrete RVs...

Theorem: Useful Theorem for Independence

Let Y_1 and Y_2 have a joint PDF $f(y_1,y_2)$ that is positive if and only if $a \le y_1 \le b$ and $c \le y_2 \le d$, for constants a,b,c, and d, and $f(y_1,y_2)=0$ otherwise. Then Y_1 and Y_2 are independent if and only if

$$f(y_1, y_2) = g(y_1)h(y_2),$$

where $g(y_1)$ is a nonnegative function of y_1 alone and $h(y_2)$ is a nonnegative function of y_2 alone.

- Independence means you can factor the joint PDF as the product of a function of y_1 and a function of y_2 .
- ► This tells us that we do not actually need to derive the marginal densities.
- \triangleright $g(y_1)$ and $h(y_2)$ need not, themselves, be density functions.

Example 11:

Suppose X and Y has joint PDF $f(x, y) = 96x^2y^3$. Are X and Y independent?

Solution:

- ▶ Try to find functions g(x) and h(y), where
 - ightharpoonup g(x) is solely a function of x: $g(x) = 24x^2$
 - h(y) is solely a function of y: $h(y) = 4y^3$,

such that their product is $f(x, y) = 96x^2y^3$.

▶ By the previous theorem, X and Y are independent.

Questions?

Homework Exercises: 5.21, 5.23, 5.27, 5.35, 5.41 Solutions will be discussed this Friday by the TA.