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Previously...
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Marginal Probability Distribution

▶ Let Y1 and Y2 be random variables with joint CDF F (y1, y2)
▶ Marginal CDF of Y1: F1(y1) = F (y1,∞)
▶ Marginal CDF of Y2: F2(y2) = F (∞, y2)

▶ Let Y1 and Y2 be jointly discrete random variables with joint PMF
p(y1, y2).

▶ Marginal PMF of Y1: p1(y1) =
∑

all y2
p(y1, y2)

▶ Marginal PMF of Y2: p2(y2) =
∑

all y1
p(y1, y2)

▶ Let Y1 and Y2 be jointly continuous random variables with joint PDF
f (y1, y2).

▶ Marginal PDF of Y1: f1(y1) =
∫∞
−∞ f (y1, y2)dy2

▶ Marginal PDF of Y2: f2(y2) =
∫∞
−∞ f (y1, y2)dy1
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Conditional Probability Distribution

▶ Let Y1 and Y2 be jointly discrete random variables with joint PMF
p(y1, y2) and marginal PMFs p1(y1) and p2(y2).

▶ Conditional PMF of Y1 given Y2 = y2:

p(y1|y2) = P(Y1 = y1|Y2 = y2) =
P(Y1=y1,Y2=y2)

P(Y2=y2)
= p(y1,y2)

p2(y2)
,

provided that p2(y2) > 0.

▶ Let Y1 and Y2 be jointly continuous random variables with joint PDF
f (y1, y2) and marginal PDFs f1(y1) and f2(y2).

▶ Conditional PDF of Y1 given Y2 = y2: f (y1|y2) = f (y1,y2)
f2(y2)

,

provided that f2(y2) > 0.

▶ Let Y1 and Y2 be jointly continuous random variables with joint PDF
f (y1, y2).

▶ Conditional CDF of Y1 given Y2 = y2: F (y1|y2) = P(Y1 ≤ y1|Y2 = y2).
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Independent Random Variables

▶ Let Y1 have CDF F1(y1), Y2 have CDF F2(y2), and Y1 and Y2 have
joint CDF F (y1, y2).

▶ Y1 and Y2 independent: F (y1, y2) = F1(y1)F2(y2)

▶ If Y1 and Y2 are not independent, then they are dependent.

▶ Let Y1 and Y2 be jointly discrete random variables with joint PMF
p(y1, y2) and marginal PMFs p1(y1) and p2(y2).

▶ Y1 and Y2 independent: p(y1, y2) = p1(y1)p2(y2)

▶ Let Y1 and Y2 be jointly continuous random variables with joint PDF
f (y1, y2) and marginal PDFs f1(y1) and f2(y2).

▶ Y1 and Y2 independent: f (y1, y2) = f1(y1)f2(y2)

▶ Useful Theorem for Independence: f (y1, y2) = g(y1)h(y2),
where g(y1) is a nonnegative function of y1 alone and h(y2) is a
nonnegative function of y2 alone.
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Expected Value of a Function of Random Variables
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Expected Value of a Function of Random Variables

Definition: Expected Value of a Function of Discrete RVs

Let g(Y1,Y2, . . . ,Yn) be a function of the discrete random variables
Y1,Y2, . . . ,Yn with PMF p(y1, y2, . . . , yn). The expected value of
g(Y1,Y2, . . . ,Yn) is

E{g(Y1,Y2, . . . ,Yn)} =
∑
y1

∑
y2

· · ·
∑
yn

g(Y1,Y2, . . . ,Yn)p(y1, y2, . . . , yn).

▶ We will need the formula above to compute one of the most popular measures of
DEPENDENCE of RVs:

Cov(Y1,Y2) = E{(Y1 − µ1)(Y2 − µ2)}

=
∑
y1

∑
y2

(y1 − µ1)(y2 − µ2)p(y1, y2)
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Expected Value of a Function of Random Variables

Definition: Expected Value of a Function of Continuous RVs

Let g(Y1,Y2, . . . ,Yn) be a function of the continuous random variables
Y1,Y2, . . . ,Yn with PDF f (y1, y2, . . . , yn). The expected value of
g(Y1,Y2, . . . ,Yn) is

E{g(Y1,Y2, . . . ,Yn)} =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(Y1,Y2, . . . ,Yn)

×f (y1, y2, . . . , yn)dy1dy2 · · · dyn.

▶ We will need the formula above to compute one of the most popular measures of
DEPENDENCE of RVs:

Cov(Y1,Y2) = E{(Y1 − µ1)(Y2 − µ2)}

=

∫ ∞

−∞

∫ ∞

−∞
(y1 − µ1)(y2 − µ2)f (y1, y2)dy1dy2
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Expected Value of a Function of Random Variables

Theorem: Properties of Expected Value

1 Let c be a constant. Then, E (c) = c .

2 Let g(Y1,Y2) be a function of Y1 and Y2 and let c be a constant.
Then, E{cg(Y1,Y2)} = cE{g(Y1,Y2)}.

3 Let g1(Y1,Y2), g2(Y1,Y2), . . . , g1k(Y1,Y2) be functions of Y1 and
Y2. Then,

E{g1(Y1,Y2) + g2(Y1,Y2) + . . .+ gk(Y1,Y2)}
= E{g1(Y1,Y2)}+ E{g2(Y1,Y2)}+ . . . +E{gk(Y1,Y2)}.
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Expected Value of a Function of Random Variables

Theorem: Expected Value of Independent RVs

Let Y1 and Y2 be independent random variables (discrete or continuous)
and g(Y1) and h(Y2) be functions of only Y1 and Y2, respectively. Then,

E{g(Y1)h(Y2)} = E{g(Y1)}E{h(Y2)},

provided that the expectations exist.
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Covariance
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Covariance

Definition: Covariance

If Y1 and Y2 are random variables with mean µ1 and µ2, respectively, the
covariance of Y1 and Y2 is

Cov(Y1,Y2) = E{(Y1 − µ1)(Y2 − µ2)}.

▶ Covariance is a number quantifying average dependence between two
random variables.

▶ Notation: σ12 = Cov(Y1,Y2)
▶ Discrete Case:

Cov(Y1,Y2) =
∑

y1

∑
y2
(y1 − µ1)(y2 − µ2)p(y1, y2),

Expected value of a function of discrete RV (Slide 8)

where p(y1, y2) is the joint PMF of Y1 and Y2.
▶ Continuous Case:

Cov(Y1,Y2) =
∫∞
−∞

∫∞
−∞(y1 − µ1)(y2 − µ2)f (y1, y2)dy1dy2,

Expected value of a function of continuous RV (Slide 9)

where f (y1, y2) is the joint PDF of Y1 and Y2.
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Covariance: Sign of Covariance Reveals Relationship

Cov(X ,Y ) = E{(X − µx)(Y − µy )}

▶ Cov(X ,Y ) > 0 means a positive relationship between X and Y
▶ When X increases, Y tends to increase.
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Covariance: Sign of Covariance Reveals Relationship

Cov(X ,Y ) = E{(X − µx)(Y − µy )}

▶ Cov(X ,Y ) < 0 means a negative relationship between X and Y
▶ When X increases, Y tends to decrease.
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Covariance: Sign of Covariance Reveals Relationship

Cov(X ,Y ) = E{(X − µx)(Y − µy )}

▶ Cov(X ,Y ) = 0 means there is NO relationship between X and Y
▶ When X increases, Y can increase or decrease.
▶ We call X and Y uncorrelated random variables.
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Covariance: Can Be Easily Detected
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Covariance

Properties: More Useful Formula to Compute Covariance

1 If Y1 and Y2 are random variables with mean µ1 and µ2, respectively,
then

Cov(Y1,Y2) = E (Y1Y2)− µ1µ2.

Proof:

Cov(Y1,Y2) = E{(Y1 − µ1)(Y2 − µ2)} def’n of covariance

= E(Y1Y2 − µ1Y2 − µ2Y1 + µ1µ2)

= E(Y1Y2)− E(µ1Y2)− E(µ2Y1) + E(µ1µ2) linearity of expectation

= E(Y1Y2)− µ1E(Y2)− µ2E(Y1) + µ1µ2 expected value of a constant is itself

= E(Y1Y2)− µ1µ2 − µ2µ1 + µ1µ2 def’n of expected value

= E(Y1Y2)− µ1µ2.

▶ Discrete Case: Cov(Y1,Y2) =
∑

y1

∑
y2
y1y2p(y1, y2)− µ1µ2

▶ Continuous Case: Cov(Y1,Y2) =
∫∞
−∞

∫∞
−∞ y1y2f (y1, y2)dy1dy2 − µ1µ2
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Covariance

Example 1: Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 0 1 2

x
0 1/8 1/8 0
1 1/8 2/8 1/8
2 0 1/8 1/8

Compute Cov(X ,Y ).
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Covariance

Example 1: Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 0 1 2 pX (x) xpX (x)

x
0 1/8 1/8 0 2/8 0
1 1/8 2/8 1/8 4/8 1/2
2 0 1/8 1/8 2/8 1/2

pY (y) 2/8 4/8 2/8
ypY (y) 0 1/2 1/2

Compute Cov(X ,Y ).

Solution:
▶ Cov(X ,Y ) =

∑
x

∑
y xyp(x , y)−

{∑
x xpX (x)

}{∑
y ypY (y)

}
Formula

▶
∑

x xpX (x) = 0 + 1/2 + 1/2 = 1
▶

∑
y ypY (y) = 0 + 1/2 + 1/2 = 1

▶
∑

x

∑
y xyp(x , y) = (0)(0)(1/8) + (0)(1)(1/8) + (0)(2)(0)

+(1)(0)(1/8) + (1)(1)(2/8) + (1)(2)(1/8)

+(2)(0)(0) + (2)(1)(1/8) + (2)(2)(1/8) = 10/8

▶ Therefore, Cov(X ,Y ) = 10/8− (1)(1) = 1/4.
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Covariance

Example 2: (Continuous)

Suppose X and Y are continuous random variables on the unit square
[0, 1]× [0, 1] with joint density f (x , y) = 2x3 + 2y3. Compute Cov(X ,Y ).

Solution:
▶ Formula: Cov(X ,Y ) =

∫∞
−∞

∫∞
−∞ xyf (x , y)dxdy −

{∫∞
−∞ xfX (x)dx

}{∫∞
−∞ yfY (y)dy

}
▶ fX (x) =

∫∞
−∞ f (x , y)dy =

∫ 1

0
2x3 + 2y 3dy = (2x3y + 2

4
y 4)

∣∣1
0
= 2x3 + 1

2

▶
∫∞
−∞ xfX (x)dx =

∫ 1

0
x
(
2x3 + 1

2

)
dx =

∫ 1

0
2x4 + 1

2
xdx = ( 2

5
x5 + 1

4
x2)

∣∣1
0
= 13

20

▶ fY (y) =
∫∞
−∞ f (x , y)dx =

∫ 1

0
2x3 + 2y 3dx = ( 2

4
x4 + 2y 3x)

∣∣1
0
= 1

2
+ 2y 3

▶
∫∞
−∞ yfY (y)dy =

∫ 1

0
y
(
1
2
+ 2y 3

)
dy =

∫ 1

0
1
2
y + 2y 4dy = ( 1

4
y 2 + 2

5
y 5)

∣∣1
0
= 13

20

▶
∫∞
−∞

∫∞
−∞ xyf (x , y)dxdy =

∫ 1

0

∫ 1

0
xy

(
2x3 + 2y 3

)
dxdy

=
∫ 1

0

∫ 1

0
2x4y + 2xy 4dxdy

=
∫ 1

0

(
2
5
x5y + x2y 4

) ∣∣1
0
dy

=
∫ 1

0
2
5
y + y 4dy =

(
1
5
y 2 + 1

5
y 5
) ∣∣1

0
= 2

5

▶ Thus, Cov(X ,Y ) = 2
5
− ( 13

20
)( 13

20
) = − 9

400
.
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Covariance

Properties: Covariance of Independent RVs

2 If Y1 and Y2 are independent random variables, then

Cov(Y1,Y2) = 0.

WARNING: The converse is false. Zero covariance DOES NOT
always imply independence.

Proof:

Cov(Y1,Y2) = E(Y1Y2)− µ1µ2 more useful formula for covariance

= E(Y1)E(Y2)− µ1µ2 expected value of independent RVs

= µ1µ2 − µ1µ2 def’n of expected value

= 0.
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Covariance

Example 3: (Zero covariance does not imply independence)

Let X be a random variable that takes values −2,−1, 0, 1, 2, each with
probability 1/5. Let Y = X 2. Show that Cov(X ,Y ) = 0 but X and Y are
not independent.
Solution:

▶ Computing Cov(X ,Y ): Formula: Cov(Y1, Y2) =
∑

y1

∑
y2

y1y2p(y1, y2) − µ1µ2

▶ The joint probability table of X and Y is as follows:
x

Y \X -2 -1 0 1 2 pY (y) ypY (y)

y
0 0 0 1/5 0 0 1/5 0
1 0 1/5 0 1/5 0 2/5 2/5
4 1/5 0 0 0 1/5 2/5 8/5

pX (x) 1/5 1/5 1/5 1/5 1/5
xpX (x) -2/5 -1/5 0 1/5 2/5

▶ µx =
∑

x xpX (x) = −2/5− 1/5 + 0 + 1/5 + 2/5 = 0
▶ µy =

∑
y ypY (y) = 0 + 2/5 + 8/5 = 2

▶
∑

x

∑
y xyp(x , y) = 0

▶ Thus, Cov(X ,Y ) = 0− (0)(2) = 0.

▶ Also, X and Y are clearly dependent because knowing the value X will give us the
value of Y since Y = X 2.
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Covariance

Properties: Variance is the Covariance of a RV w/ Itself

3 Cov(Y1,Y1) = V (Y1).

Proof:

Cov(Y1,Y1) = E{(Y1 − µ1)(Y1 − µ1)} def’n of covariance

= E{(Y1 − µ1)
2}

= V (Y1). def’n of variance

We can also use the more useful formula for covariance to do the proof...

Cov(Y1,Y1) = E(Y1Y1)− µ1µ1 more useful formula for covariance

= E(Y 2
1 )− µ2

1

= V (Y1). more useful formula for variance

▶ This property tells us that the covariance is a more general version of variance...
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Covariance

Properties: Covariance of Linear Transformations

4 Cov(aY1 + b, cY2 + d) = acCov(Y1,Y2),
for constants a, b, c , and d .

Proof:

Cov(aY1 + b, cY2 + d) = E{(aY1 + b)(cY2 + d)} − E(aY1 + b)E(cY2 + d)

more useful formula for covariance: Cov(Y1, Y2) = E(Y1Y2) − µ1µ2

= E(acY1Y2 + bcY2 + adY1 + bd)

−{aE(Y1) + b}{cE(Y2) + d}
= acE(Y1Y2) + bcE(Y2) + adE(Y1) + bd

−acE(Y1)E(Y2)− bcE(Y2)− adE(Y1)− bd

linearity of expectation

= acE(Y1Y2)− acE(Y1)E(Y2) cancel out terms

= ac{E(Y1Y2)− E(Y1)E(Y2)} factor out constants

= acCov(Y1,Y2). def’n of covariance
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Covariance

Properties: Covariance of Sums

5 Cov(Y1 + Y2,Y3) = Cov(Y1,Y3) + Cov(Y2,Y3)

Proof:

Cov(Y1 + Y2,Y3) = E{(Y1 + Y2)Y3} − E(Y1 + Y2)E(Y3)

more useful formula for covariance: Cov(Y1, Y2) = E(Y1Y2) − µ1µ2

= E(Y1Y3 + Y2Y3)− {E(Y1) + E(Y2)}E(Y3)

= E(Y1Y3) + E(Y2Y3)− E(Y1)E(Y3)− E(Y2)E(Y3)

linearity of expectation

= {E(Y1Y3)− E(Y1)E(Y3)}+ {E(Y2Y3)− E(Y2)E(Y3)}
rearrange and group terms

= Cov(Y1,Y3) + Cov(Y2,Y3). def’n of covariance
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Covariance

Properties: Variance of the Sum

6 V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1,Y2)

Proof:

V (Y1 + Y2) = E{(Y1 + Y2)
2} − {E(Y1 + Y2)}2

more useful formula for variance: V (Y ) = E(Y 2) − {E(Y )}2

= E(Y 2
1 + 2Y1Y2 + Y 2

2 )− {E(Y1) + E(Y2)}2

= E(Y 2
1 ) + 2E(Y1Y2) + E(Y 2

2 )− {E(Y1)}2 − 2E(Y1)E(Y2)− {E(Y2)}2

linearity of expectation

= {E(Y 2
1 )−{E(Y1)}2}+ {E(Y 2

2 )−{E(Y2)}2}+2E(Y1Y2)−2E(Y1)E(Y2)

rearrange and group terms from the same RV

= V (Y1) + V (Y2) + 2{E(Y1Y2)− E(Y1)E(Y2)} def’n of variance

= V (Y1) + V (Y2) + 2Cov(Y1,Y2). def’n of covariance

▶ This property also implies: V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1,Y2).

▶ If Y1,Y2 are independent: V (Y1 + Y2) = V (Y1) + V (Y2). independent ⇒ Cov(Y1, Y2) = 0
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Correlation
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Correlation

Definition: Correlation

If Y1 and Y2 are random variables with finite second moments, the
correlation of Y1 and Y2 is

Corr(Y1,Y2) =
Cov(Y1,Y2)√
V (Y1)V (Y2)

.

▶ Notation: ρ12 = Corr(Y1,Y2) The Greek letter ρ, pronounced as ’rho’, is reserved for correlation.

▶ The units of covariance Cov(Y1,Y2) are ‘units of Y1 times units of
Y2’. This makes it hard to compare covariances...

▶ Correlation is a way to remove the scale from the covariance.

▶ Correlation takes the covariance and makes it meaningful.
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Correlation vs. Covariance

Correlation takes the covariance and makes it meaningful...

Which X and Y pair has the strongest linear relationship?

▶ The correlation in C is closer to 1 than in A, B, and D.

▶ We can easily increase the covariance by increasing the variance w/o changing the
correlation: ρ = σXY√

σ2
X
σ2
Y

⇒ σXY = ρ
√

σ2
Xσ

2
Y .
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Correlation vs. Covariance

Corr(X ,Y ) =
Cov(X ,Y )√
V (X )V (Y )

Covariance Correlation
indicates the nature of the relationship measure of the strength of the relationship
between X and Y (positive or negative) between X and Y

magnitude of the covariance is affected by independent of the influence of
the magnitude of X and Y the magnitude of X and Y

not standardized standardized

Values can range between −∞ and ∞ Values can range between −1 and 1

Exact value of the covariance is not useful The closer the value is to -1 or 1,
but the sign indicates the relationship the stronger the relationship

between X and Y . between X and Y .
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Correlation

Properties: Correlation always falls between −1 and 1

1 −1 ≤ Corr(Y1,Y2) ≤ 1.

Proof:

{Cov(Y1,Y2)}2 ≤ V (Y1)V (Y2) Cauchy-Schwarz inequality

⇒ −
√

V (Y1)V (Y2) ≤ Cov(Y1,Y2) ≤
√

V (Y1)V (Y2)

⇒ −1 ≤ Cov(Y1,Y2)√
V (Y1)V (Y2)

≤ 1 multiply
1√

V (Y1)V (Y2)

⇒ −1 ≤ Corr(Y1,Y2) ≤ 1 def’n of correlation
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Correlation

▶ The closer ρXY is to 1 or -1, the stronger the linear relationship.

▶ If ρXY = −1, X and Y has a perfect negative linear relationship.

▶ If ρXY = 1, X and Y has a perfect positive linear relationship.
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Correlation

Properties: A RV is Perfectly Correlated with Itself

2 Corr(Y1,Y1) = 1.

Proof:

Corr(Y1,Y1) =
Cov(Y1,Y1)√
V (Y1)V (Y1)

def’n of covariance

=
Cov(Y1,Y1)

V (Y1)

=
V (Y1)

V (Y1)
Property # 3: Cov(Y1, Y1) = V (Y1)

= 1.
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Correlation

Example 4: (Recall Ex. 1)

Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 0 1 2

x
0 1/8 1/8 0
1 1/8 2/8 1/8
2 0 1/8 1/8

Compute Corr(X ,Y ).
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Correlation

Example 4: (Recall Ex. 1)

Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 0 1 2 pX (x) x2pX (x)

x
0 1/8 1/8 0 2/8 0
1 1/8 2/8 1/8 4/8 1/2
2 0 1/8 1/8 2/8 1

pY (y) 2/8 4/8 2/8
y2pY (y) 0 1/2 1

Compute Corr(X ,Y ).

Solution:
▶ Formula: Corr(X ,Y ) = Cov(X ,Y )√

V (X )V (Y )

▶ Earlier we computed Cov(X ,Y ) = 1/4.

▶ V (X ) = E(X 2)− {E(X )}2
▶ Earlier we computed E(X ) = 1.
▶ E(X 2) =

∑
x x

2pX (x) = 0 + 1/2 + 1 = 3
2

▶ V (X ) = 3
2
− 12 = 1

2
(cont’d next slide...)
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Correlation

Example 4: (Recall Ex. 1)

Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 0 1 2 pX (x) x2pX (x)

x
0 1/8 1/8 0 2/8 0
1 1/8 2/8 1/8 4/8 1/2
2 0 1/8 1/8 2/8 1

pY (y) 2/8 4/8 2/8
y2pY (y) 0 1/2 1

Compute Corr(X ,Y ).

Solution:
▶ Formula: Corr(X ,Y ) = Cov(X ,Y )√

V (X )V (Y )

▶ Earlier we computed Cov(X ,Y ) = 1/4.

▶ V (Y ) = E(Y 2)− {E(Y )}2
▶ Earlier we computed E(Y ) = 1.
▶ E(Y 2) =

∑
y y

2pY (y) = 0 + 1/2 + 1 = 3
2

▶ V (Y ) = 3
2
− 12 = 1

2
(cont’d next slide...)
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Correlation

Example 4: (Recall Ex. 1)

Consider X ,Y with the following joint PMF p(x , y):

y
X\Y 0 1 2 pX (x) x2pX (x)

x
0 1/8 1/8 0 2/8 0
1 1/8 2/8 1/8 4/8 1/2
2 0 1/8 1/8 2/8 1

pY (y) 2/8 4/8 2/8
y2pY (y) 0 1/2 1

Compute Corr(X ,Y ).

Solution:
▶ Formula: Corr(X ,Y ) = Cov(X ,Y )√

V (X )V (Y )

▶ Earlier we computed Cov(X ,Y ) = 1/4.

▶ V (X ) = 3
2
− 12 = 1

2

▶ V (Y ) = 3
2
− 12 = 1

2

▶ Thus, Corr(X ,Y ) =
1
4√

( 1
2 )(

1
2 )

= 1
2
.
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Covariance

Example 5: (Recall Ex. 2)

Suppose X and Y are continuous random variables on the unit square
[0, 1]× [0, 1] with joint density f (x , y) = 2x3 + 2y3. Compute Corr(X ,Y ).

Solution:
▶ Formula: Corr(X ,Y ) = Cov(X ,Y )√

V (X )V (Y )

▶ Earlier we computed Cov(X ,Y ) = − 9
400

.

▶ V (X ) = E(X 2)− {E(X )}2
▶ Earlier we computed E(X ) = 13

20
and fX (x) = 2x3 + 1

2
.

▶ E(X 2) =
∫∞
−∞ x2fX (x)dx =

∫ 1

0
x2

(
2x3 + 1

2

)
dx =

∫ 1

0
2x5 + 1

2
x2dx =

( 1
3
x6 + 1

6
x3)

∣∣1
0
= 1

2

▶ V (X ) = 1
2
−

(
13
20

)2
= 31

400

(cont’d next slide...)
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Covariance

Example 5: (Recall Ex. 2)

Suppose X and Y are continuous random variables on the unit square
[0, 1]× [0, 1] with joint density f (x , y) = 2x3 + 2y3. Compute Corr(X ,Y ).

Solution:
▶ Formula: Corr(X ,Y ) = Cov(X ,Y )√

V (X )V (Y )

▶ Earlier we computed Cov(X ,Y ) = − 9
400

.

▶ V (X ) = 1
2
−

(
13
20

)2
= 31

400

▶ V (Y ) = E(Y 2)− {E(Y )}2
▶ Earlier we computed E(Y ) = 13

20
and fY (y) =

1
2
+ 2y 3.

▶ E(Y 2) =
∫∞
−∞ y 2fY (y)dy =

∫ 1

0
y 2

(
1
2
+ 2y 3

)
dy =

∫ 1

0
1
2
y 2 + 2y 5dy =

( 1
6
y 3 + 1

3
y 6)

∣∣1
0
= 1

2

▶ V (Y ) = 1
2
−

(
13
20

)2
= 31

400

▶ Thus, Corr(X ,Y ) =
− 9

400√
( 31
400 )(

31
400 )

= −0.29.
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Conditional Expectation
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Conditional Expectation

Definition: Conditional Expectation

If Y1 and Y2 are any two random variables, the conditional expectation of
g(Y1), given that Y2 = y2, is

E{g(Y1)|Y2 = y2} =

∫ ∞

−∞
g(y1)f (y1|y2)dy1,

if Y1 and Y2 are jointly continuous and

E{g(Y1)|Y2 = y2} =
∑
all y1

g(y1)p(y1|y2),

if Y1 and Y2 are jointly discrete.

▶ If g(Y1) = Y1, E{g(Y1)|Y2 = y2} is the conditional expectation.

▶ If g(Y1) = (Y1 − µ1)
2, E{g(Y1)|Y2 = y2} is the conditional variance.
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Conditional PMF

Example 6: (Recall Ex. 5 in Lec 16)
Suppose X and Y have the following joint PMF:

y
X\Y 0 1 2

x
0 0.10 0.04 0.02
1 0.08 0.20 0.06
2 0.06 0.14 0.30

Find E (Y |X = 1).
Solution:

E(Y |X = 1) = 0× P(Y = 0|X = 1) + 1× P(Y = 1|X = 1) + 2× P(Y = 2|X = 1)

def’n of conditional expectation

= 0× 0.2353 + 1× 0.5882 + 2× 0.1765

We solved for the conditional PMF of Y in Lec 16, Slide 31: p(y|X = 1) =


0.2353, if y = 0

0.5882, if y = 1

0.1765, if y = 2.

= 0.9412.
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Conditional Expectation

Properties: Conditional Expectation

1 Law of Total Expectation: Let Y1 and Y2 be any two random
variables. Then,

E (Y1) = E{E (Y1|Y2)}.

Remarks:

▶ E (Y1|Y2) is a random variable and we can compute its expectation.

▶ Sometimes called the “Law of Iterated Expectations”...

▶ It is a decomposition rule.

▶ It decomposes E (Y1) into smaller/ easier conditional expectations.
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Conditional Expectation

A Closer Look At the Law of Total Expectation...
Suppose we have X and Y continuous RVs. Then, by the law of total
expectation, we have: E (X ) = E{E (X |Y )}.
WHY DOES THIS WORK?

▶ We know E (X ) is a constant/number and is simply

E (X ) =

∫ ∞

−∞
xfX (x)dx . def’n of expected value

▶ Now, apply the def’n of expected value to E{E (X |Y )}:

E{E (X |Y )} =

∫ ∞

−∞
E (X |Y = y)fY (y)dy WHY?

(cont’d next slide...)
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Conditional Expectation

Claim: E (X |Y ) is a random variable.
▶ What are the possible values of E (X |Y )?

▶ E (X |Y = y1)

▶ E (X |Y = y2)
...

▶ E (X |Y = yn)
▶ The value of E (X |Y ) depends on the value of the random variable Y .
▶ In fact, E (X |Y ) is a function of the random variable Y .

Mathematically, we write this as: g(Y ) = E (X |Y ).

How to find the expectation of a function of the random variable Y ?

Recall Theorem 4.4 in Lec 9, Slide 20:
Let g(Y ) be a function of Y . Then the expected value of g(Y ) is given by

E{g(Y )} =

∫ ∞

−∞
g(y)fY (y)dy ,

provided that the integral exists. (cont’d next slide...)
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Conditional Expectation

A Closer Look At the Law of Total Expectation... (cont’d)

E{E (X |Y )} =

∫ ∞

−∞
E (X |Y = y)fY (y)dy prev. slide: E{g(Y )} =

∫ ∞

−∞
g(y)fY (y)dy

=

∫ ∞

−∞

∫ ∞

−∞
xf (x |y)dxfY (y)dy

def’n of conditional expectation: E{g(Y1)|Y2 = y2} =

∫ ∞

−∞
g(y1)f (y1|y2)dy1

=

∫ ∞

−∞

∫ ∞

−∞
xf (x , y)dxdy def’n of conditional PDF: f (y1|y2) =

f (y1, y2)

f2(y2)

=

∫ ∞

−∞
x

{∫ ∞

−∞
f (x , y)dy

}
dx rearranging

=

∫ ∞

−∞
xfX (x)dx def’n of marginal PDF: f1(y1) =

∫ ∞

−∞
f (y1, y2)dy2

= E (X ). def’n of expected value

Same principle applies for discrete RV.
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Conditional Expectation

Properties: Conditional Expectation

2 Law of Total Variance: Let Y1 and Y2 be any two random variables.
Then,

V (Y1) = E{V (Y1|Y2)}+ V {E (Y1|Y2)}.

Proof:

V (Y1) = E(Y 2
1 )− {E(Y1)}2 def’n of variance: V (X ) = E(X 2) − {E(X )}2

= E{E(Y 2
1 |Y2)} − [E{E(Y1|Y2)}]2

law of total expectation: E(Y1) = E{E(Y1|Y2)}

= E [V (Y1|Y2) + {E(Y1|Y2)}2]− [E{E(Y1|Y2)}]2

def’n of variance: E(X 2) = V (X ) + {E(X )}2

= E{V (Y1|Y2)}+ E [{E(Y1|Y2)}2]−[E{E(Y1|Y2)}]2

linearity of expectation

= E{V (Y1|Y2)}+ V {E(Y1|Y2)}.
def’n of variance: V (X ) = E(X 2) − {E(X )}2
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Conditional Expectation

Example 7:
Let N be the number you get when you roll a die. Let H be the number of
heads after tossing a fair coin N times. Find E (H).

Solution:

E(H) = E{E(H|N)} law of total expectation

Note: H is a Binomial RV with prob. of success =
1

2
and N num. of trials

= E

(
N

2

)
If X ∼ B(n, p), E(X ) = np. Here, n = N and p =

1

2
.

=
1

2
E(N) linearity of expectation

=
1

2

(
1× 1

6
+ 2× 1

6
+ 3× 1

6
+ 4× 1

6
+ 5× 1

6
+ 6× 1

6

)
def’n of expected value

=
3.5

2
= 1.75.
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Bonus Exercise
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Bonus Exercise

Guess the correlation of X and Y ...

▶ If you guess the EXACT number: +10 pts

▶ If you are close enough: +5 pts

Email your guess to: marylai.salvana@uconn.edu
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Questions?
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Homework Exercises: 5.21, 5.23, 5.27, 5.35, 5.41
Solutions will be discussed this Friday by the TA.
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