STAT 3375Q: Introduction to Mathematical Statistics I Lecture 17: Expected Value of a Function of Random Variables; Covariance; Conditional Expectation

Mary Lai Salvaña, Ph.D.

Department of Statistics University of Connecticut

March 27, 2024

Outline

1 Previously...

- Marginal Probability Distribution
- Conditional Probability Distribution
- Independent Random Variables
- 2 Expected Value of a Function of Random Variables
- **3** Covariance

4 Correlation

5 Conditional Expectation

Previously...

Marginal Probability Distribution

• Let Y_1 and Y_2 be random variables with joint CDF $F(y_1, y_2)$

- Marginal CDF of Y_1 : $F_1(y_1) = F(y_1, \infty)$
- Marginal CDF of Y_2 : $F_2(y_2) = F(\infty, y_2)$
- ▶ Let Y_1 and Y_2 be jointly discrete random variables with joint PMF $p(y_1, y_2)$.
 - Marginal PMF of Y₁: p₁(y₁) = ∑_{all y2} p(y₁, y₂)
 Marginal PMF of Y₂: p₂(y₂) = ∑_{all y1} p(y₁, y₂)
- Let Y_1 and Y_2 be jointly continuous random variables with joint PDF $f(y_1, y_2)$.
 - Marginal PDF of Y_1 : $f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$
 - Marginal PDF of Y_2 : $f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$

Conditional Probability Distribution

- ▶ Let Y_1 and Y_2 be jointly discrete random variables with joint PMF $p(y_1, y_2)$ and marginal PMFs $p_1(y_1)$ and $p_2(y_2)$.
 - Conditional PMF of Y_1 given $Y_2 = y_2$: $p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)}$, provided that $p_2(y_2) > 0$.
- Let Y₁ and Y₂ be jointly continuous random variables with joint PDF f(y₁, y₂) and marginal PDFs f₁(y₁) and f₂(y₂).
 Conditional PDF of Y₁ given Y₂ = y₂: f(y₁|y₂) = f(y₁,y₂)/f₂(y₂),

provided that $f_2(y_2) > 0$.

- ▶ Let Y_1 and Y_2 be jointly continuous random variables with joint PDF $f(y_1, y_2)$.
 - Conditional CDF of Y_1 given $Y_2 = y_2$: $F(y_1|y_2) = P(Y_1 \le y_1|Y_2 = y_2)$.

Independent Random Variables

▶ Let Y_1 have CDF $F_1(y_1)$, Y_2 have CDF $F_2(y_2)$, and Y_1 and Y_2 have joint CDF $F(y_1, y_2)$.

• Y_1 and Y_2 independent: $F(y_1, y_2) = F_1(y_1)F_2(y_2)$

- ▶ If Y_1 and Y_2 are not independent, then they are dependent.
- Let Y₁ and Y₂ be jointly discrete random variables with joint PMF p(y₁, y₂) and marginal PMFs p₁(y₁) and p₂(y₂).
 Y₁ and Y₂ independent: p(y₁, y₂) = p₁(y₁)p₂(y₂).

• Y_1 and Y_2 independent: $p(y_1, y_2) = p_1(y_1)p_2(y_2)$

▶ Let Y_1 and Y_2 be jointly continuous random variables with joint PDF $f(y_1, y_2)$ and marginal PDFs $f_1(y_1)$ and $f_2(y_2)$.

• Y_1 and Y_2 independent: $f(y_1, y_2) = f_1(y_1)f_2(y_2)$

▶ Useful Theorem for Independence: $f(y_1, y_2) = g(y_1)h(y_2)$, where $g(y_1)$ is a nonnegative function of y_1 alone and $h(y_2)$ is a nonnegative function of y_2 alone.

Mary Lai Salvaña, Ph.D.

Definition: Expected Value of a Function of Discrete RVs

Let $g(Y_1, Y_2, ..., Y_n)$ be a function of the discrete random variables $Y_1, Y_2, ..., Y_n$ with PMF $p(y_1, y_2, ..., y_n)$. The *expected value* of $g(Y_1, Y_2, ..., Y_n)$ is

$$E\{g(Y_1, Y_2, \ldots, Y_n)\} = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_n} g(Y_1, Y_2, \ldots, Y_n) p(y_1, y_2, \ldots, y_n).$$

We will need the formula above to compute one of the most popular measures of DEPENDENCE of RVs:

$$\begin{aligned} \mathsf{Cov}(Y_1, Y_2) &= & E\{(Y_1 - \mu_1)(Y_2 - \mu_2)\} \\ &= & \sum_{y_1} \sum_{y_2} (y_1 - \mu_1)(y_2 - \mu_2) p(y_1, y_2) \end{aligned}$$

(

Definition: Expected Value of a Function of Continuous RVs

Let $g(Y_1, Y_2, ..., Y_n)$ be a function of the continuous random variables $Y_1, Y_2, ..., Y_n$ with PDF $f(y_1, y_2, ..., y_n)$. The *expected value* of $g(Y_1, Y_2, ..., Y_n)$ is

$$E\{g(Y_1, Y_2, \ldots, Y_n)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(Y_1, Y_2, \ldots, Y_n) \times f(y_1, y_2, \ldots, y_n) dy_1 dy_2 \cdots dy_n.$$

We will need the formula above to compute one of the most popular measures of DEPENDENCE of RVs:

$$Cov(Y_1, Y_2) = E\{(Y_1 - \mu_1)(Y_2 - \mu_2)\} \\ = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (y_1 - \mu_1)(y_2 - \mu_2)f(y_1, y_2)dy_1dy_2$$

Theorem: Properties of Expected Value

- 1 Let c be a constant. Then, E(c) = c.
- **2** Let $g(Y_1, Y_2)$ be a function of Y_1 and Y_2 and let c be a constant. Then, $E\{cg(Y_1, Y_2)\} = cE\{g(Y_1, Y_2)\}.$

3 Let $g_1(Y_1, Y_2)$, $g_2(Y_1, Y_2)$, ..., $g_1k(Y_1, Y_2)$ be functions of Y_1 and Y_2 . Then,

 $E\{g_1(Y_1, Y_2) + g_2(Y_1, Y_2) + \ldots + g_k(Y_1, Y_2)\}$ = $E\{g_1(Y_1, Y_2)\} + E\{g_2(Y_1, Y_2)\} + \ldots + E\{g_k(Y_1, Y_2)\}$

Theorem: Expected Value of Independent RVs

Let Y_1 and Y_2 be independent random variables (discrete or continuous) and $g(Y_1)$ and $h(Y_2)$ be functions of only Y_1 and Y_2 , respectively. Then,

 $E\{g(Y_1)h(Y_2)\}=E\{g(Y_1)\}E\{h(Y_2)\},\$

provided that the expectations exist.

Definition: Covariance

If Y_1 and Y_2 are random variables with mean μ_1 and μ_2 , respectively, the *covariance* of Y_1 and Y_2 is

$$Cov(Y_1, Y_2) = E\{(Y_1 - \mu_1)(Y_2 - \mu_2)\}.$$

- Covariance is a number quantifying average dependence between two random variables.
- Notation: $\sigma_{12} = \text{Cov}(Y_1, Y_2)$
- Discrete Case:

$$Cov(Y_1, Y_2) = \sum_{y_1} \sum_{y_2} (y_1 - \mu_1)(y_2 - \mu_2) p(y_1, y_2),$$

Expected value of a function of discrete RV (Slide 8)

where $p(y_1, y_2)$ is the joint PMF of Y_1 and Y_2 .

Continuous Case:

$$Cov(Y_1, Y_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (y_1 - \mu_1)(y_2 - \mu_2)f(y_1, y_2)dy_1dy_2,$$

Expected value of a function of continuous RV (Slide 9)

where $f(y_1, y_2)$ is the joint PDF of Y_1 and Y_2 .

UConn STAT 3375Q

Covariance: Sign of Covariance Reveals Relationship

$$Cov(X, Y) = E\{(X - \mu_x)(Y - \mu_y)\}$$

Cov(X, Y) > 0 means a positive relationship between X and Y
 When X increases, Y tends to increase.

Covariance: Sign of Covariance Reveals Relationship

$$Cov(X, Y) = E\{(X - \mu_x)(Y - \mu_y)\}$$

Cov(X, Y) < 0 means a negative relationship between X and Y
 When X increases, Y tends to decrease.

Covariance: Sign of Covariance Reveals Relationship

$$Cov(X, Y) = E\{(X - \mu_x)(Y - \mu_y)\}$$

• Cov(X, Y) = 0 means there is NO relationship between X and Y

- ▶ When X increases, Y can increase or decrease.
- ▶ We call X and Y uncorrelated random variables.

Covariance: Can Be Easily Detected

Properties: More Useful Formula to Compute Covariance

() If Y_1 and Y_2 are random variables with mean μ_1 and μ_2 , respectively, then

$$Cov(Y_1, Y_2) = E(Y_1Y_2) - \mu_1\mu_2.$$

Proof:

• Discrete Case: $Cov(Y_1, Y_2) = \sum_{y_1} \sum_{y_2} y_1 y_2 p(y_1, y_2) - \mu_1 \mu_2$

► Continuous Case: Cov $(Y_1, Y_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1 y_2 f(y_1, y_2) dy_1 dy_2 - \mu_1 \mu_2$

Example 1: Consider X, Y with the following joint PMF p(x, y):

			у	
	$X \setminus Y$	0	1	2
	0	1/8	1/8	0
х	1	1/8	2/8	1/8
	2	0	1/8	1/8

Compute Cov(X, Y).

Example 1: Consider X, Y with the following joint PMF p(x, y):

			у]	
	$X \setminus Y$	0	1	2	$p_X(x)$	$xp_X(x)$
	0	1/8	1/8	0	2/8	0
x	1	1/8	2/8	1/8	4/8	1/2
	2	0	1/8	1/8	2/8	1/2
F	$p_Y(y)$	2/8	4/8	2/8	-	
У	$p_Y(y)$	0	1/2	1/2		

Compute Cov(X, Y).

Solution:

►
$$Cov(X, Y) = \sum_{x} \sum_{y} xyp(x, y) - \{\sum_{x} xp_{X}(x)\} \{\sum_{y} yp_{Y}(y)\}$$
 Formula
► $\sum_{x} xp_{X}(x) = 0 + 1/2 + 1/2 = 1$
► $\sum_{y} yp_{Y}(y) = 0 + 1/2 + 1/2 = 1$
► $\sum_{x} \sum_{y} xyp(x, y) = (0)(0)(1/8) + (0)(1)(1/8) + (0)(2)(0) + (1)(0)(1/8) + (1)(1)(2/8) + (1)(2)(1/8) + (2)(0)(0) + (2)(1)(1/8) + (2)(2)(1/8) = 10/8$
► Therefore, $Cov(X, Y) = 10/8 - (1)(1) = 1/4$.

20 / 53

Example 2: (Continuous)

Suppose X and Y are continuous random variables on the unit square $[0,1] \times [0,1]$ with joint density $f(x,y) = 2x^3 + 2y^3$. Compute Cov(X, Y).

Solution:

► Formula: $\operatorname{Cov}(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y) dx dy - \left\{ \int_{-\infty}^{\infty} xf_X(x) dx \right\} \left\{ \int_{-\infty}^{\infty} yf_Y(y) dy \right\}$

• $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_0^1 2x^3 + 2y^3 dx = \left(\frac{2}{4}x^4 + 2y^3x\right)\Big|_0^1 = \frac{1}{2} + 2y^3$ • $\int_{-\infty}^{\infty} yf_Y(y) dy = \int_0^1 y\left(\frac{1}{2} + 2y^3\right) dy = \int_0^1 \frac{1}{2}y + 2y^4 dy = \left(\frac{1}{4}y^2 + \frac{2}{5}y^5\right)\Big|_0^1 = \frac{13}{20}$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y) dxdy = \int_{0}^{1} \int_{0}^{1} xy (2x^{3} + 2y^{3}) dxdy$$

= $\int_{0}^{1} \int_{0}^{1} 2x^{4}y + 2xy^{4} dxdy$
= $\int_{0}^{1} (\frac{2}{5}x^{5}y + x^{2}y^{4}) |_{0}^{1} dy$
= $\int_{0}^{1} \frac{2}{5}y + y^{4} dy = (\frac{1}{5}y^{2} + \frac{1}{5}y^{5}) |_{0}^{1} = \frac{2}{5}$
Thus, $Cov(X, Y) = \frac{2}{5} - (\frac{13}{20})(\frac{13}{20}) = -\frac{9}{400}.$

Properties: Covariance of Independent RVs

2 If Y_1 and Y_2 are independent random variables, then

 $\operatorname{Cov}(Y_1,Y_2)=0.$

WARNING: The converse is false. Zero covariance DOES NOT always imply independence.

Proof:

$$Cov(Y_1, Y_2) = E(Y_1Y_2) - \mu_1\mu_2 \text{ more useful formula for covariance}$$

= $E(Y_1)E(Y_2) - \mu_1\mu_2$ expected value of independent RVs
= $\mu_1\mu_2 - \mu_1\mu_2$ def'n of expected value
= 0.

Example 3: (Zero covariance does not imply independence) Let X be a random variable that takes values -2, -1, 0, 1, 2, each with probability 1/5. Let $Y = X^2$. Show that Cov(X, Y) = 0 but X and Y are

not independent.

Solution:

- Computing Cov(X, Y): Formula: Cov(Y₁, Y₂) = $\sum_{y_1} \sum_{y_2} y_1 y_2 p(y_1, y_2) \mu_1 \mu_2$
 - The joint probability table of X and Y is as follows:

► T

23 / 53

Properties: Variance is the Covariance of a RV w/ Itself

3 $Cov(Y_1, Y_1) = V(Y_1).$

Proof:

$$\begin{aligned} \mathsf{Cov}(Y_1, Y_1) &= E\{(Y_1 - \mu_1)(Y_1 - \mu_1)\} & \text{def'n of covariance} \\ &= E\{(Y_1 - \mu_1)^2\} \\ &= V(Y_1). & \text{def'n of variance} \end{aligned}$$

We can also use the more useful formula for covariance to do the proof...

 $\begin{aligned} \mathsf{Cov}(\mathsf{Y}_1,\mathsf{Y}_1) &= & \mathsf{E}(\mathsf{Y}_1\mathsf{Y}_1) - \mu_1\mu_1 & \text{more useful formula for covariance} \\ &= & \mathsf{E}(\mathsf{Y}_1^2) - \mu_1^2 \\ &= & \mathsf{V}(\mathsf{Y}_1). & \text{more useful formula for variance} \end{aligned}$

▶ This property tells us that the covariance is a more general version of variance...

Mary Lai Salvaña, Ph.D

Properties: Covariance of Linear Transformations

• $Cov(aY_1 + b, cY_2 + d) = acCov(Y_1, Y_2),$ for constants a, b, c, and d.

Proof:

$$Cov(aY_{1} + b, cY_{2} + d) = E\{(aY_{1} + b)(cY_{2} + d)\} - E(aY_{1} + b)E(cY_{2} + d)$$

more useful formula for covariance: $Cov(Y_{1}, Y_{2}) = E(Y_{1}Y_{2}) - \mu_{1}\mu_{2}$
$$= E(acY_{1}Y_{2} + bcY_{2} + adY_{1} + bd)$$

 $-\{aE(Y_{1}) + b\}\{cE(Y_{2}) + d\}$
$$= acE(Y_{1}Y_{2}) + bcE(Y_{2}) + adE(Y_{1}) + bd$$

 $-acE(Y_{1})E(Y_{2}) - bcE(Y_{2}) - adE(Y_{1}) - bd$
linearity of expectation
$$= acE(Y_{1}Y_{2}) - acE(Y_{1})E(Y_{2}) \quad cancel out terms$$

 $= ac\{E(Y_{1}Y_{2}) - E(Y_{1})E(Y_{2})\} \quad factor out constants$
 $= acCov(Y_{1}, Y_{2}). \quad def'n of covariance$

25 / 53

Properties: Covariance of Sums

5 $Cov(Y_1 + Y_2, Y_3) = Cov(Y_1, Y_3) + Cov(Y_2, Y_3)$

Proof:

$$Cov(Y_1 + Y_2, Y_3) = E\{(Y_1 + Y_2)Y_3\} - E(Y_1 + Y_2)E(Y_3)$$

more useful formula for covariance: $Cov(Y_1, Y_2) = E(Y_1Y_2) - \mu_1\mu_2$

- $= E(Y_1Y_3 + Y_2Y_3) \{E(Y_1) + E(Y_2)\}E(Y_3)$
- $= E(Y_1Y_3) + E(Y_2Y_3) E(Y_1)E(Y_3) E(Y_2)E(Y_3)$

linearity of expectation

 $= \{ E(Y_1Y_3) - E(Y_1)E(Y_3) \} + \{ E(Y_2Y_3) - E(Y_2)E(Y_3) \}$

rearrange and group terms

 $= \operatorname{Cov}(Y_1, Y_3) + \operatorname{Cov}(Y_2, Y_3). \quad \text{def'n of covariance}$

Properties: Variance of the Sum

6 $V(Y_1 + Y_2) = V(Y_1) + V(Y_2) + 2Cov(Y_1, Y_2)$

Proof:

$$V(Y_{1} + Y_{2}) = E\{(Y_{1} + Y_{2})^{2}\} - \{E(Y_{1} + Y_{2})\}^{2}$$

more useful formula for variance: $V(Y) = E(Y^{2}) - \{E(Y)\}^{2}$

$$= E(Y_{1}^{2} + 2Y_{1}Y_{2} + Y_{2}^{2}) - \{E(Y_{1}) + E(Y_{2})\}^{2}$$

$$= E(Y_{1}^{2}) + 2E(Y_{1}Y_{2}) + E(Y_{2}^{2}) - \{E(Y_{1})\}^{2} - 2E(Y_{1})E(Y_{2}) - \{E(Y_{2})\}^{2}$$

linearity of expectation

$$= \{E(Y_{1}^{2}) - \{E(Y_{1})\}^{2}\} + \{E(Y_{2}^{2}) - \{E(Y_{2})\}^{2}\} + 2E(Y_{1}Y_{2}) - 2E(Y_{1})E(Y_{2})$$

rearrange and group terms from the same RV

$$= V(Y_{1}) + V(Y_{2}) + 2\{E(Y_{1}Y_{2}) - E(Y_{1})E(Y_{2})\} \quad def'n of variance$$

$$= V(Y_{1}) + V(Y_{2}) + 2Cov(Y_{1}, Y_{2}). \quad def'n of covariance \square$$

This property also implies: $V(Y_{1} - Y_{2}) = V(Y_{1}) + V(Y_{2}) - 2Cov(Y_{1}, Y_{2}).$
If Y_{1}, Y_{2} are independent: $V(Y_{1} + Y_{2}) = V(Y_{1}) + V(Y_{2}).$ independent $\Rightarrow Cov(Y_{1}, Y_{2}) = 0$

Definition: Correlation

If Y_1 and Y_2 are random variables with finite second moments, the *correlation* of Y_1 and Y_2 is

$$\operatorname{Corr}(Y_1, Y_2) = \frac{\operatorname{Cov}(Y_1, Y_2)}{\sqrt{V(Y_1)V(Y_2)}}.$$

- ▶ Notation: $\rho_{12} = \text{Corr}(Y_1, Y_2)$ The Greek letter ρ , pronounced as 'rho', is reserved for correlation.
- ► The units of covariance Cov(Y₁, Y₂) are 'units of Y₁ times units of Y₂'. This makes it hard to compare covariances...
- ► Correlation is a way to remove the scale from the covariance.
- ► Correlation takes the covariance and makes it meaningful.

Correlation vs. Covariance

Which X and Y pair has the strongest linear relationship?

- The correlation in C is closer to 1 than in A, B, and D.
- ▶ We can easily increase the covariance by increasing the variance w/o changing the correlation: $\rho = \frac{\sigma_{XY}}{\sqrt{\sigma_X^2 \sigma_Y^2}} \Rightarrow \sigma_{XY} = \rho \sqrt{\sigma_X^2 \sigma_Y^2}$.

Correlation vs. Covariance

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{V(X)V(Y)}}$$

Covariance	Correlation
indicates the nature of the relationship	measure of the strength of the relationship
between X and Y (positive or negative)	between X and Y
magnitude of the covariance is affected by	independent of the influence of
the magnitude of X and Y	the magnitude of X and Y
not standardized	standardized
Values can range between $-\infty$ and ∞	Values can range between -1 and 1
Exact value of the covariance is not useful	The closer the value is to -1 or 1 ,
but the sign indicates the relationship	the stronger the relationship
between X and Y .	between X and Y.

Properties: Correlation always falls between -1 and 1

1 $-1 \leq Corr(Y_1, Y_2) \leq 1.$

Proof:

$$\begin{split} &\{\mathsf{Cov}(Y_1,Y_2)\}^2 &\leq V(Y_1)V(Y_2) \quad \text{Cauchy-Schwarz inequality} \\ &\Rightarrow -\sqrt{V(Y_1)V(Y_2)} &\leq \mathsf{Cov}(Y_1,Y_2) \leq \sqrt{V(Y_1)V(Y_2)} \\ &\Rightarrow -1 &\leq \frac{\mathsf{Cov}(Y_1,Y_2)}{\sqrt{V(Y_1)V(Y_2)}} \leq 1 \quad \text{multiply} \; \frac{1}{\sqrt{V(Y_1)V(Y_2)}} \\ &\Rightarrow -1 &\leq \mathsf{Corr}(Y_1,Y_2) \leq 1 \quad \text{def'n of correlation} \end{split}$$

- ▶ The closer ρ_{XY} is to 1 or -1, the stronger the linear relationship.
- ▶ If $\rho_{XY} = -1$, X and Y has a perfect negative linear relationship.
- If $\rho_{XY} = 1$, X and Y has a perfect positive linear relationship.

Properties: A RV is Perfectly Correlated with Itself

2 Corr $(Y_1, Y_1) = 1$.

Proof:

$$Corr(Y_1, Y_1) = \frac{Cov(Y_1, Y_1)}{\sqrt{V(Y_1)V(Y_1)}} \quad def'n \text{ of covariance}$$
$$= \frac{Cov(Y_1, Y_1)}{V(Y_1)}$$
$$= \frac{V(Y_1)}{V(Y_1)} \quad Property \# 3: Cov(Y_1, Y_1) = V(Y_1)$$
$$= 1.$$

Example 4: (Recall Ex. 1) Consider X, Y with the following joint PMF p(x, y):

			у	
	$X \setminus Y$	0	1	2
	0	1/8	1/8	0
x	1	1/8	2/8	1/8
	2	0	1/8	1/8

Compute Corr(X, Y).

Example 4: (Recall Ex. 1)

Consider X, Y with the following joint PMF p(x, y):

			у]	
	$X \setminus Y$	0	1	2	$p_X(x)$	$x^2 p_X(x)$
	0	1/8	1/8	0	2/8	0
x	1	1/8	2/8	1/8	4/8	1/2
	2	0	1/8	1/8	2/8	1
P	$\nu_Y(y)$	2/8	4/8	2/8	-	
y ²	$p_Y(y)$	0	1/2	1		

Compute Corr(X, Y).

Solution:

Formula:
$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X)V(Y)}}$$

• Earlier we computed Cov(X, Y) = 1/4.

$$V(X) = E(X^2) - \{E(X)\}^2$$

$$Earlier we computed $E(X) = 1.$

$$E(X^2) = \sum_x x^2 p_X(x) = 0 + 1/2 + 1 = \frac{3}{2}$$

$$V(X) = \frac{3}{2} - 1^2 = \frac{1}{2}$$
(cont'd next slide...)
Mary Lai Salvaña, Ph.D.
UConn STAT 3375Q
Introduction to Mathematical Statistics I Lec 17
36 / 53$$

Example 4: (Recall Ex. 1)

Consider X, Y with the following joint PMF p(x, y):

			у]	
	$X \setminus Y$	0	1	2	$p_X(x)$	$x^2 p_X(x)$
	0	1/8	1/8	0	2/8	0
x	1	1/8	2/8	1/8	4/8	1/2
	2	0	1/8	1/8	2/8	1
P	$\nu_Y(y)$	2/8	4/8	2/8	-	
y ²	$p_Y(y)$	0	1/2	1		

Compute Corr(X, Y).

Solution:

Mary Lai

Formula:
$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X)V(Y)}}$$

• Earlier we computed Cov(X, Y) = 1/4.

▶
$$V(Y) = E(Y^2) - \{E(Y)\}^2$$

▶ Earlier we computed $E(Y) = 1$.
▶ $E(Y^2) = \sum_y y^2 p_Y(y) = 0 + 1/2 + 1 = \frac{3}{2}$
▶ $V(Y) = \frac{3}{2} - 1^2 = \frac{1}{2}$ (cont'd next slide...)
Salvata Ph D. If con STAT 33750 Introduction to Mathematical Statistics Life 17 37 / 53

Example 4: (Recall Ex. 1)

Consider X, Y with the following joint PMF p(x, y):

			у]	
	$X \setminus Y$	0	1	2	$p_X(x)$	$x^2 p_X(x)$
	0	1/8	1/8	0	2/8	0
x	1	1/8	2/8	1/8	4/8	1/2
	2	0	1/8	1/8	2/8	1
P	$\nu_Y(y)$	2/8	4/8	2/8	-	
y ²	$p_Y(y)$	0	1/2	1		

Compute Corr(X, Y).

Solution:

Formula:
$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X)V(Y)}}$$

- Earlier we computed Cov(X, Y) = 1/4.
- ► $V(X) = \frac{3}{2} 1^2 = \frac{1}{2}$

•
$$V(Y) = \frac{3}{2} - 1^2 = \frac{1}{2}$$

• Thus,
$$\operatorname{Corr}(X, Y) = \frac{\frac{1}{4}}{\sqrt{(\frac{1}{2})(\frac{1}{2})}} = \frac{1}{2}$$
.

Example 5: (Recall Ex. 2)

Suppose X and Y are continuous random variables on the unit square $[0,1] \times [0,1]$ with joint density $f(x,y) = 2x^3 + 2y^3$. Compute Corr(X, Y).

Solution:

Formula:
$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X)V(Y)}}$$

• Earlier we computed $Cov(X, Y) = -\frac{9}{400}$.

(cont'd next slide...)

Example 5: (Recall Ex. 2)

Suppose X and Y are continuous random variables on the unit square $[0,1] \times [0,1]$ with joint density $f(x,y) = 2x^3 + 2y^3$. Compute Corr(X, Y).

Solution:

Formula:
$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X)V(Y)}}$$

• Earlier we computed $Cov(X, Y) = -\frac{9}{400}$.

•
$$V(X) = \frac{1}{2} - \left(\frac{13}{20}\right)^2 = \frac{31}{400}$$

$$\left(\frac{1}{6}y^3 + \frac{1}{3}y^6\right)\Big|_0^1 = \frac{1}{2} V(Y) = \frac{1}{2} - \left(\frac{13}{20}\right)^2 = \frac{31}{400}$$

► Thus,
$$\operatorname{Corr}(X, Y) = \frac{-\frac{9}{400}}{\sqrt{\left(\frac{31}{400}\right)\left(\frac{31}{400}\right)}} = -0.29$$

Definition: Conditional Expectation

If Y_1 and Y_2 are any two random variables, the *conditional expectation* of $g(Y_1)$, given that $Y_2 = y_2$, is

$$E\{g(Y_1)|Y_2=y_2\}=\int_{-\infty}^{\infty}g(y_1)f(y_1|y_2)dy_1,$$

if Y_1 and Y_2 are jointly continuous and

$$E\{g(Y_1)|Y_2 = y_2\} = \sum_{\text{all } y_1} g(y_1)p(y_1|y_2),$$

if Y_1 and Y_2 are jointly discrete.

▶ If $g(Y_1) = Y_1$, $E\{g(Y_1) | Y_2 = y_2\}$ is the conditional expectation.

▶ If $g(Y_1) = (Y_1 - \mu_1)^2$, $E\{g(Y_1) | Y_2 = y_2\}$ is the conditional variance.

Conditional PMF

Example 6: (Recall Ex. 5 in Lec 16) Suppose *X* and *Y* have the following joint PMF:

			у	
	$X \setminus Y$	0	1	2
	0	0.10	0.04	0.02
x	1	0.08	0.20	0.06
	2	0.06	0.14	0.30

Find E(Y|X = 1). Solution:

 $E(Y|X = 1) = 0 \times P(Y = 0|X = 1) + 1 \times P(Y = 1|X = 1) + 2 \times P(Y = 2|X = 1)$

def'n of conditional expectation

 $= 0 \times 0.2353 + 1 \times 0.5882 + 2 \times 0.1765$

We solved for the conditional PMF of Y in Lec 16, Slide 31: $p(y|X = 1) = \begin{cases} 0.2353, & \text{if } y = 0\\ 0.5882, & \text{if } y = 1\\ 0.1765, & \text{if } y = 2. \end{cases}$

= 0.9412.

Properties: Conditional Expectation

1 Law of Total Expectation: Let Y_1 and Y_2 be any two random variables. Then,

$E(Y_1) = E\{E(Y_1|Y_2)\}.$

Remarks:

- $E(Y_1|Y_2)$ is a random variable and we can compute its expectation.
- Sometimes called the "Law of Iterated Expectations" ...
- It is a decomposition rule.
- ▶ It decomposes $E(Y_1)$ into smaller/ easier conditional expectations.

A Closer Look At the Law of Total Expectation...

Suppose we have X and Y continuous RVs. Then, by the law of total expectation, we have: $E(X) = E\{E(X|Y)\}$. WHY DOES THIS WORK?

• We know E(X) is a constant/number and is simply

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx.$$
 definion of expected value

▶ Now, apply the def'n of expected value to $E\{E(X|Y)\}$:

$$E\{E(X|Y)\} = \int_{-\infty}^{\infty} E(X|Y = y)f_Y(y)dy \quad \text{WHY?}$$

(cont'd next slide...)

1

Claim: E(X|Y) is a random variable.

- What are the possible values of E(X|Y)?
 - $\blacktriangleright E(X|Y=y_1)$

$$\blacktriangleright E(X|Y=y_2)$$

$$\blacktriangleright E(X|Y=y_n)$$

▶ The value of E(X|Y) depends on the value of the random variable Y.

^{narginal of X} Fx(X)

▶ In fact, E(X|Y) is a <u>function of the random variable Y</u>. Mathematically, we write this as: g(Y) = E(X|Y).

How to find the expectation of a function of the random variable Y?

Recall Theorem 4.4 in Lec 9, Slide 20: Let g(Y) be a function of Y. Then the expected value of g(Y) is given by

$$E\{g(Y)\}=\int_{-\infty}^{\infty}g(y)f_{Y}(y)dy,$$

provided that the integral exists.

(cont'd next slide...)

∧ t(x,y

marginal of Y

A Closer Look At the Law of Total Expectation... (cont'd)

$$E\{E(X|Y)\} = \int_{-\infty}^{\infty} E(X|Y = y)f_Y(y)dy \quad \text{prev. slide: } E\{g(Y)\} = \int_{-\infty}^{\infty} g(y)f_Y(y)dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \underline{f(x|y)} dx \underline{f_Y(y)} dy$$

$$\text{def'n of conditional expectation: } E\{g(Y_1)|Y_2 = y_2\} = \int_{-\infty}^{\infty} g(y_1)f(y_1|y_2)dy_1$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \underline{f(x, y)} dx dy \quad \text{def'n of conditional PDF: } f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

$$= \int_{-\infty}^{\infty} x \left\{ \int_{-\infty}^{\infty} f(x, y) dy \right\} dx \quad \text{rearranging}$$

$$= \int_{-\infty}^{\infty} x f_X(x) dx \quad \text{def'n of marginal PDF: } f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$

$$= E(X). \quad \text{def'n of expected value}$$

Same principle applies for discrete RV.

Mary Lai Salvaña, Ph.D.

47 / 53

Properties: Conditional Expectation

2 Law of Total Variance: Let Y_1 and Y_2 be any two random variables. Then,

$$V(Y_1) = E\{V(Y_1|Y_2)\} + V\{E(Y_1|Y_2)\}.$$

Proof:

$$V(Y_1) = E(Y_1^2) - \{E(Y_1)\}^2 \quad \text{def'n of variance: } V(X) = E(X^2) - \{E(X)\}^2$$

$$= E\{E(Y_1^2|Y_2)\} - [E\{E(Y_1|Y_2)\}]^2$$

law of total expectation: $E(Y_1) = E\{E(Y_1|Y_2)\}$

 $= E[V(Y_1|Y_2) + \{E(Y_1|Y_2)\}^2] - [E\{E(Y_1|Y_2)\}]^2$

def'n of variance: $E(X^2) = V(X) + {E(X)}^2$

 $= E\{V(Y_1|Y_2)\} + \frac{E[\{E(Y_1|Y_2)\}^2] - [E\{E(Y_1|Y_2)\}]^2}{[E\{E(Y_1|Y_2)\}]^2}$

linearity of expectation

$$= E\{V(Y_1|Y_2)\} + V\{E(Y_1|Y_2)\}.$$

def'n of variance: $V(X) = E(X^2) - \{E(X)\}^2$

Example 7:

Let N be the number you get when you roll a die. Let H be the number of heads after tossing a fair coin N times. Find E(H).

Solution:

 $E(H) = E\{E(H|N)\} \text{ law of total expectation}$ Note: *H* is a Binomial RV with prob. of success = $\frac{1}{2}$ and *N* num. of trials $= E\left(\frac{N}{2}\right) \text{ If } X \sim B(n, p), E(X) = np. \text{ Here, } n = N \text{ and } p = \frac{1}{2}.$ $= \frac{1}{2}E(N) \text{ linearity of expectation}$ $= \frac{1}{2}\left(1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6}\right)$ def'n of expected value $= \frac{3.5}{2} = 1.75.$

Bonus Exercise

Bonus Exercise

Guess the correlation of X and Y...

▶ If you guess the EXACT number: +10 pts

▶ If you are close enough: +5 pts

Email your guess to: marylai.salvana@uconn.edu

Questions?

Homework Exercises: 5.21, 5.23, 5.27, 5.35, 5.41

Solutions will be discussed this Friday by the TA.