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Previously...
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Marginal Probability Distribution

Let Y7 and Y, be random variables with joint CDF F(y1, y»)

» Marginal CDF of Y1: Fi(y1) = F()1,0)

» Marginal CDF of Ya: Fa(y2) = F(00,y2)
Let Y7 and Y5 be jointly discrete random variables with joint PMF
p(y1, y2)-

> Marginal PMF of Yi: p1(y1) = Y a1, P(y1, y2)

> Marginal PMF of Y2: pa(y2) =3, " p(y1,y2)
Let Y7 and Y, be jointly continuous random variables with joint PDF
f(y1,¥2)-

» Marginal PDF of Y1: fi(y1) = ffooo f(y1, y2)dy>

» Marginal PDF of Ys: fh(y) = ffooo f(y1,y2)dy1
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Conditional Probability Distribution

Let Y7 and Y, be jointly discrete random variables with joint PMF
p(y1, y2) and marginal PMFs p1(y1) and p2(y2).
» Conditional PMF of Y7 given Y5 = y»:
pnly2) = P(Ys = Yz = yo) = PO = 2008,

provided that px(y») > 0.

Let Y1 and Y, be jointly continuous random variables with joint PDF
f(y1,y2) and marginal PDFs fi(y1) and f2(y2).

» Conditional PDF of Y; given Y> = ya: f(y1]y2) = fg(lyj’;)
provided that f(y2) > 0.

Let Y7 and Y, be jointly continuous random variables with joint PDF
f(y1, y2)-
» Conditional CDF of Y; given Y, = y»: F(_y1|y2) = P(Yl < y1|Y2 = y2)
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Independent Random Variables

Let Y1 have CDF Fi(y1), Y2 have CDF Fy(y»), and Y7 and Y3 have
joint CDF F(yl,yg).
> Y; and Y5 independent: F(yi,y2) = Fi(y1)Fa(y»)

If Y1 and Y5> are not independent, then they are dependent.

Let Y7 and Y5 be jointly discrete random variables with joint PMF
p(y1,y2) and marginal PMFs p1(y1) and pa(y2).
> Y1 and Y> independent: p(y1,y2) = p1(y1)p2(y2)

Let Y1 and Y, be jointly continuous random variables with joint PDF
f(y1,y2) and marginal PDFs fi(y1) and f2(y2).
> Y and Y5 independent: f(y1,y2) = fi(y1)f(y2)

Useful Theorem for Independence: f(y1,y2) = g(y1)h(y2),
where g(y1) is a nonnegative function of y; alone and h(y») is a
nonnegative function of y» alone.
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Expected Value of a Function of Random Variables
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Expected Value of a Function of Random Variables

Definition: Expected Value of a Function of Discrete RVs

Let g(Y1, Y2,..., Yn) be a function of the discrete random variables

Y1, Ya, ..., Yo with PMF p(y1,y2,...,yn). The expected value of
g(Yl, Y2, PPN Y,,) iS

E{g(Y1, Yo, Ya)} =D > - Zg Y1, Y2, Ya)p(yi, y2, - - vn)-

yi oy

We will need the formula above to compute one of the most popular measures of
DEPENDENCE of RVs:

Cov(1,Y2) = E{(Yi—p)(Ye—p2)}
= Z Z(m — p1)(y2 — p2)p(y1, y2)
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Expected Value of a Function of Random Variables

Definition: Expected Value of a Function of Continuous RVs

Let g( Y1, Ya,..., Yn) be a function of the continuous random variables

Y1, Y2,..., Yo with PDF f(y1,y2,...,yn). The expected value of
g(Yl, Yg, o000y Yn) is

E{g(¥1,Ya, ..., Y }// / IR R A

Xf}’b)’za---;)/n)d)/ld)/z dy

We will need the formula above to compute one of the most popular measures of
DEPENDENCE of RVs:

Cov(Y1,Y2) = E{(Y1—p)(Y2— p2)}

/ / (v — p1)(y2 — p2)f(y1, y2)dyrdy>
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Expected Value of a Function of Random Variables

Theorem: Properties of Expected Value

@ Let ¢ be a constant. Then, E(c) = c.

@® Let g(Y1, Y2) be a function of Y7 and Y, and let ¢ be a constant.
Then, E{Cg(Yl, Yz)} = cE{g(Yl, YQ)}

© Let g1(Y1, Y2), &(Y1, Y2), ..., g1k(Y1, Y2) be functions of Y7 and
Y5. Then,

E{gi(Y1, Y2) + &(Y1, Y2) + ... + g(Y1, Y2)}
= E{g1(Y1, V2)} + E{g2(Y1, Y2)}+ ... +E{g(Y1, Y2)}

v
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Expected Value of a Function of Random Variables

Theorem: Expected Value of Independent RVs

Let Y7 and Y; be independent random variables (discrete or continuous)
and g(Y1) and h(Y2) be functions of only Y7 and Y>, respectively. Then,

E{g(M)h(Y2)} = E{g(V1)} E{h(Y2)},

provided that the expectations exist.
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Covariance
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Covariance

Definition: Covariance

If Y1 and Y, are random variables with mean 1 and po, respectively, the
covariance of Y7 and Y5 is

Cov(Y1, Y2) = E{(Y1 — pn)(Y2 — pi2) }-

Covariance is a number quantifying average dependence between two
random variables.

Notation: 01> = Cov( Y7, Y5)

Discrete Case:

Cov(Y1,Y2) =32, >0, (r1 — 1) (y2 — p2)p(y1, y2),

Expected value of a function of discrete RV (Slide 8)
where p(y1,y»2) is the joint PMF of Y; and Y5.
Continuous Case:
Cov( Y1, Y2) = 20 [Z0.(v1 — p1)(y2 — p2)f (1, y2)dyrdys,

Expected value of a function of continuous RV (Slide 9)

where f(yi, y2) is the joint PDF of Y; and Y5.
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Covariance: Sign of Covariance Reveals Relationship

Cov(X,Y) = E{(X — m)(Y — 1)}

Cov(X,Y) > 0 means a positive relationship between X and Y
» When X increases, Y tends to increase.

Positive Covariance
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Covariance: Sign of Covariance Reveals Relationship

Cov(X,Y) = E{(X — m)(Y — 1)}

Cov(X,Y) < 0 means a negative relationship between X and Y
» When X increases, Y tends to decrease.

Negative Covariance
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Covariance: Sign of Covariance Reveals Relationship

Cov(X, Y) = E{(X — m)(Y — )}

Cov(X,Y) = 0 means there is NO relationship between X and Y

» When X increases, Y can increase or decrease.
» We call X and Y uncorrelated random variables.

Zero Covariance
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Covariance: Can Be Easily Detected

Positive Covariance Zero Covariance

Negative Covariance
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Covariance

Properties: More Useful Formula to Compute Covariance

@ If Y1 and Y5 are random variables with mean 1 and o, respectively,

then
Cov(Y1, Y2) = E(Y1Y2) — papa.
Proof:
COV(\/l7 Yz) = E{(Yl — lLLl)(Y2 — /JQ)} def'n of covariance

= EMY2— Y2 — p2 Y1 + pip2)

= EMY2) — E(u1Y2) — E(u2Y1) + E(uip2)  linearity of expectation

= EMY2) — miE(Y2) — 2 E(Y1) + papta  expected value of a constant is itself
= E1Y2) — papo — propin + papre  def'n of expected value

= EMY2) — pipe. O

Discrete Case: Cov(Y1, Y2) =30, >0 viyap(y1,y2) — papie
Continuous Case: Cov(Y1, Y2) = [0 [T yayaf (y1, y2)dyrdys — papio
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Covariance

Example 1: Consider X, Y with the following joint PMF p(x, y):

Compute Cov(X,Y).

Mary Lai Salvafia, Ph.D.

y
X\Y| 0o 1 2

0 |1/8 1/8 0

x 1 |1/8 2/8 1/8
2 | 0 1/8 1/8
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Covariance

Example 1: Consider X, Y with the following joint PMF p(x, y):

y

X\Y1 0 1 2 |px(x) xpx(x)

0 |1/8 1/8 0 | 2/8 0

1 [1/8 2/8 1/8| 4/8  1/2
2 | 0 1/8 1/8| 2/8  1)2

py(y) 2/8 4/8 2/8

ypy(y) 0 1/2 12

Compute Cov(X,Y).

Solution:
Cov(X,Y) =2 > xyp(x,y) = (>, XpX(X)}{Zy ypy(y)} Formula
> 3 xpx(x)=0+1/2+1/2=1
> >, ypv(y) =0+1/2+1/2=1

> 22 20, xvp(x,y) = (0)(0)(1/8) 4 (0)(1)(1/8) + (0)(2)(0)
+(1)(0)(1/8) + (1)(1)(2/8) + (1)(2)(1/8)
+(2)(0)(0) + (2)(1)(1/8) + (2)(2)(1/8) = 10/8
Therefore, Cov(X,Y)=10/8 — (1)(1) =1/4. O
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Covariance

Example 2: (Continuous)
Suppose X and Y are continuous random variables on the unit square
[0,1] x [0, 1] with joint density f(x,y) = 2x3 + 2y3. Compute Cov(X, Y).
Solution:

Formula: Cov(X,Y) = /fx [fx xyf(x,y)dxdy — {L\\ xfx(x)dx}{ff; yfy(y)dy}

> fx(x) = f_ f(x y)dy*f012x3—|—2y3dy (2x®y + y )‘0 =2x>+ 2

> [ xfx(x )dxff x (2 +3)dx = ]]2>< + Ixdx = (3x° + 1x° ‘O:£

> fr(y) = [0 f(x,y)dx = fol 2% 4+ 2y%dx = (3x* + 2y3x)|(1) =1+2y°

L yfv Yy = [y (3+2y°) dy = [) by +2y'dy = (32 + 3y%)|, = &

v

v

20 70 xyf(x, y)dxdy = fo fo xy (2x* + 2y°) dxdy

= fo ] 2x*y + 2xy* dxdy

= Jo 3y +x2y*) oy

= Jy ty +ytdy = (37 + 1) = 2
Thus, Cov(X,Y) =2 — (1)(%) = —3%5- O
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Covariance

Properties: Covariance of Independent RVs
® If Y1 and Y5 are independent random variables, then

COV( Yl, Y2) =0.

WARNING: The converse is false. Zero covariance DOES NOT
always imply independence.

Proof:

COV( Yl, Yz) = E( Yl Y2) — H1p2 more useful formula for covariance
= E( Yl)E( YQ) — 12 expected value of independent RVs

= M12 — M1p2  def'n of expected value
0.

O
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Covariance

Example 3: (Zero covariance does not imply independence)
Let X be a random variable that takes values —2,—1,0,1, 2, each with
probability 1/5. Let Y = X2. Show that Cov(X, Y) =0 but X and Y are

not independent.
Solution:

Computing Cov(X, Y): Formula: Cov(Yy, Ya) = 5, 5

2y Zayy

y1y2pP(y1,y2) — pim2

» The joint probability table of X and Y is as follows:

X
Y\X -2 -1 0 1 2 py(y) ypy(y)
0 0 o0 1/5 0 0] 1/5
y 1 0 1/5 0 1/5 0 2/5 2/5
4 1/5 0 0 0 1/5 2/5 8/5
px(x)  1/5 1/5 1/5 1/5 1/5
xpx(x) -2/5 -1/5 0 1/5 2/5
> =y xpx(x)=-2/5-1/54+0+1/5+2/5=0

> oy =3, ypv(y) =0+2/5+8/5=2
> > >, xvp(x,y) =0
Thus, Cov(X,Y)=0-(0)(2) =0.
Also, X and Y are clearly dependent because knowing the value X will give us the
value of Y since Y = X2.

Mary Lai Salvafia, Ph.D.

UConn STAT 3375Q

Introduction to Mathematical Statistics | Lec 17

O

23 /53



Covariance

Properties: Variance is the Covariance of a RV w/ Itself
9 COV(Yl, Yl) = V(Yl)

Proof:

COV( Yl, Yl) = E{(Yl — /.Ll)(yl — /.Ll)} def'n of covariance

E{(Y1 — m)’}
V(Yl) def'n of variance

We can also use the more useful formula for covariance to do the proof...

COV( \/17 Yl) = E( Yl Yl) — M1f1  more useful formula for covariance
E(YY) — it

= V( Yl) more useful formula for variance

O

This property tells us that the covariance is a more general version of variance...
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Covariance

Properties: Covariance of Linear Transformations

O Cov(aYi + b, cYa + d) = acCov(Ys, Y2),
for constants a, b, ¢, and d.

Proof:
Cov(aYi+ b,cYo+d) = E{(aYi+ b)(cYa+d)} — E(aYi+ b)E(cY2 +d)

more useful formula for covariance: Cov(Y1, ¥2) = E(Y1Ya) — i1 pi2
= E(acY1Y2 + bcYs + adY: + bd)
—{aE(Y2) + BH{cE(Y2) + d}
= acE(Y1Ys) + beE(Ys) + adE( Y1) + bd
—acE(Y1)E(Y2) — beE(Ys) — adE( Y1) — bd
linearity of expectation
= acE(Y1Y2) —acE(Y1)E(Y2) cancel out terms
ac{E(Y1Y2) — E(Y1)E(Y2)} factor out constants
acCov( Y1, Y2).  defn of covariance [
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Covariance

Properties: Covariance of Sums
(5) COV( Y1+ Yo, Y3) = COV( Y1, Y3) 2 COV( Yo, Y3)

Proof:

COV(Yl + Yz, Y3) E{(Yl + Y2)Y3} — E(Y1 + Yg)E(Yg,)

more useful formula for covariance: Cov(Yi, Ya) = E(YiYa) — p1pa

= EMYs+ YaYs) —{E(Y1) + E(Y2)}E(Y3)
E(V1Ys) + E(YaYs) — E(Y1)E(Ys) — E(Y2)E(Y5)
linearity of expectation

= {E(MYs) — E(Y1)E(Y3)} +{E(Y2Y3) — E(Y2)E(Y3)}
rearrange and group terms

= COV( Yl, Y3) + COV( Y2, Y3) def'n of covariance

O
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Covariance

Properties: Variance of the Sum
(6) V(Yl -+ Y2) = V(Yl) + V(Yz) -+ 2COV(Y1, Yz)

Proof:

Vit Ys) = E{(Mi+ Y2’} —{E(Vi+Y2)}
more useful formula for variance: V(Y) = E(Y?) — {E(Y)}?
= E(Y{+2%Y2+ Y5) — {E(V1) + E(Y2)}?
= E(Y?) +2E(1Y2) + E(Y) — {E(V1)}* — 2E(V1)E(Y2) — {E(Y2)}?
linearity of expectation
= {E(YD)—{EM)P} +{E(Y)—{E(Y2)}*}+2E(Y1 Y2) —2E( Y1) E(Y2)
rearrange and group terms from the same RV
= V(Y1) + V(Y2) +2{E(V1Y2) — E(Y))E(Ya)}  dern of variance
= V(Y1) + V(Y2) +2Cov( Y1, Y2). def'n of covariance  [J
This property also implies: V(Y1 — Y2) = V(Y1) + V(Y2) — 2Cov( Y1, Y2).
If Y1, Y2 are independent: V(Y1 + Y2) = V(Y1) + V(Y2). independent = Cov(Y;. v2) = 0
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Correlation
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Correlation

Definition: Correlation
If Y1 and Y5 are random variables with finite second moments, the
correlation of Y7 and Y5 is

_ COV(Yl, Yz)
Corr(Y1, Y2) = —V(Yl)V(Y 3

Notat|0n p]_2 - Corr( Y]_, Y2) The Greek letter p, pronounced as 'rho’, is reserved for correlation

The units of covariance Cov(Yi, Y2) are ‘units of Y; times units of
Y5'. This makes it hard to compare covariances...

Correlation is a way to remove the scale from the covariance.

Correlation takes the covariance and makes it meaningful.
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Correlation vs. Covariance

Correlation takes the covariance and makes it meaningful...

02=05, 02=05, oxy=0.2, p=0.4 04=5, 02=5, oxy=2, p=04
~ A _B
. .y
© o Uy 7 Uy
« «
2=3, 02=05 =098, p=038 2=12, 02=2 =196, p=04
Oy =3, oy=0.0, oxy=0.96, p=0. oxy=12, oy=2, oxy=1.96, p=0.
-4 C -4 D
“° W
BT O 4., 2 ¥ 50 P R
© o W, Mx
4 6 8 10 12 14 16 0 5 10 15 20

Which X and Y pair has the strongest linear relationship?
The correlation in C is closer to 1 than in A, B, and D.
We can easily increase the covariance by increasing the variance w/o changing the
correlation: p = \/% = oxy = p\/0%0%.
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Correlation vs. Covariance

Corr(X, Y) = _Cov(X,Y)
V(X)v(Y)
Covariance Correlation
indicates the nature of the relationship measure of the strength of the relationship
between X and Y (positive or negative) between X and Y
magnitude of the covariance is affected by independent of the influence of
the magnitude of X and Y the magnitude of X and Y
not standardized standardized
Values can range between —oo and oo Values can range between —1 and 1
Exact value of the covariance is not useful The closer the value is to -1 or 1,
but the sign indicates the relationship the stronger the relationship
between X and Y. between X and Y.
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Correlation

Properties: Correlation always falls between —1 and 1

® —1<Corr(Yy,Y2) <1

Proof:
{COV( Yl, Y2)}2 S V( Yl) V(Y2) Cauchy-Schwarz inequality
= —/ V(Yl)V(Yz) S COV(Yl7 Yz) S V(Yl)V(Yz)
=-1 < M <1 multiply I
VVM)V(Y2) VVORIVY)
= -1 § Corr( Yl, Yz) S 1 def'n of correlation

Mary Lai Salvafia, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 17 32 /53



Correlation

The closer pxy is to 1 or -1, the stronger the linear relationship.
If pxy = —1, X and Y has a perfect negative linear relationship.
If pxy =1, X and Y has a perfect positive linear relationship.

p=-1

p=-05

p=0

Mary Lai Salvafia, Ph.D.
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Correlation

Properties: A RV is Perfectly Correlated with ltself
® Corr(Yy1, Y1) =1

Proof:
Cov(Y1, Y1)
V(Y1)V(Y1)
Cov(Y1, Y1)
vin)
_ovew) o )
= V(v) roperty # 3: Cov(Y1, Y1) = V(Y1)
= 1.

def'n of covariance

Corr( Y1, Y1)
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Correlation

Example 4: (Recall Ex. 1)
Consider X, Y with the following joint PMF p(x, y):

y
X\Y|o 1 2
0 [1/8 1/8 0

x 1 |1/8 2/8 1/8

2 | 0o 1/8 1/8

Compute Corr(X,Y).
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Correlation

Example 4: (Recall Ex. 1)

Consider X, Y with the following joint PMF p(x,y):

y
X\Y| 0 1 2 |px(x) xpx(x)
0 [1/8 1/8 0 | 2/8 0
x 1 |1/8 2/8 1/8| 4/8 1/2
2 | 0o 1/8 1/8| 2/8 1
py(y) 2/8 4/8 2/8
vpy(y) 0 1/2 1
Compute Corr(X,Y).
Solution:
: = _Cov(X,¥)
Formula: Corr(X,Y) = TN
> Earlier we computed Cov(X,Y) = 1/4.
> V(X) = E(X?) — {E(X)}?
> Earlier we computed E(X) = 1.
> E(X?) =3 X*px(x)=0+1/2+1=23
» V(X)=2-1"=1 (cont'd next slide...)
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Correlation

Example 4: (Recall Ex. 1)

Consider X, Y with the following joint PMF p(x,y):

y
X\v | o 1 2 | px(x) x?px(x)
0 [1/8 1/8 0 | 2/8 !
x 1 |1/8 2/8 1/8| 4/8 1)
2 | 0 1/8 1/8] 2/8 !
py(y) 2/8 4/8 2/8
ylv(y) 0 1/2 1
Compute Corr(X, ¥).
Solution:
) = _CovX,¥)
Formula: Corr(X,Y) = VVX)V(Y)

> Earlier we computed Cov(X,Y) = 1/4.

vYyy

> V(Y)=3-1"=

V(Y) = E(Y?) - {E(YV)}?
Earlier we computed E(Y) = 1.
E(Y) =3, v’pv(y) =0+1/2+1=3

1

2
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Correlation

Example 4: (Recall Ex. 1)

Consider X, Y with the following joint PMF p(x,y):

y
X\Y| 0 1 2 |px(x) xpx(x)
0 1/8 1/8 0 2/8 0
x 1 |1/8 2/8 1/8| 4/8 1/2
2 0 1/8 1/8| 2/8 1
py(y) 2/8 4/8 2/8
yey(y) 0 1/2 1
Compute Corr(X,Y).
Solution:
. — _Cov(X,¥)
Formula: Corr(X,Y) = TN
> Earlier we computed Cov(X,Y) = 1/4.
»V(X)=2-17=1
_ 3 2 _ 1
1
Thus, Corr(X,Y) = L =1
HE) 2
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Covariance

Example 5: (Recall Ex. 2)
Suppose X and Y are continuous random variables on the unit square
[0,1] x [0, 1] with joint density f(x,y) = 2x3 + 2y3. Compute Corr(X, Y).

Solution:

Formula: Corr(X,Y) = %

> Earlier we computed Cov(X,Y) = — 2.

v

V(X) = E(X?) — {E(X)}*

Earlier we computed E(X) = % and fx(x) = 2x* + 3.

E(X?) = ffooo x*fx(x)dx = 01 x? (2X3 + %) dx = fol 2x5 + %xzdx =
G+ ) =3

V(X) =3 ()" = aw

vy

v

(cont'd next slide...)
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Covariance

Example 5: (Recall Ex. 2)

Suppose X and Y are continuous random variables on the unit square

[0,1] x [0, 1] with joint density f(x,y) = 2x3 +2y3. Compute Corr(X, Y).

Solution:
Formula: Corr(X,Y) = _Cov(X,Y)

v

Thus, Corr(X,Y) =

VO)V(Y)
Earlier we computed Cov(X, Y) = —
VX)) =3- (%)=&

20/ 400

V(Y) = E(Y?) - {E(Y)}? .

Earlier we computed E(Y) = 32 and fy(y) = 1 + 2y°.

E(Y?) = [7, yzfy(y)dy= Olyz(%Jr2y)c/y—f1 1y? +2y°dy =
Y+ 30 =13
ViY)=1-(8)=2

2 20 400

9
40

NESTE
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Conditional Expectation
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Conditional Expectation

Definition: Conditional Expectation

If Y1 and Y5 are any two random variables, the conditional expectation of
g(Y1), given that Y2 =y, is

E{g(Y1)|Y2 = y} =/ g(n1)f(yly2)dy,
if Y1 and Y5 are jointly continuous and

E{g(1)|Y2=y2} = > g(y1)p(nly2),

all yi

if Y1 and Y5 are jointly discrete.

If g(Y1) = Y1, E{g(Y1)|Y2 = y»} is the conditional expectation.
If g(Y1) = (Ya — m1)?, E{g(Y1)|Y2 = y»} is the conditional variance.
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Conditional PMF

Example 6: (Recall Ex. 5 in Lec 16)
Suppose X and Y have the following joint PMF:

y
Y 0 1 2

X\
0 (010 004 0.02
1
2

0.08 0.20 0.06
0.06 0.14 0.30

Find E(Y|X =1).
Solution:
E(YIX=1) = 0xP(Y=0X=1)+1xP(Y=1X=1)+2x P(Y =2|X =1)

def'n of conditional expectation

= 0x0.2353+1 x0.56882 + 2 x 0.1765
0.2353, ify =0

We solved for the conditional PMF of Y in Lec 16, Slide 31: p(y|X 1) 0.5882, ify=1
0.1765, ify = 2.

= 0.9412.
L]
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Conditional Expectation

Properties: Conditional Expectation

@® Law of Total Expectation: Let Y; and Y5 be any two random
variables. Then,

E(Y) = E{E(Y4|Y2)}.

Remarks:
E(Y1]|Y2) is a random variable and we can compute its expectation.
Sometimes called the “Law of Iterated Expectations” ...
It is a decomposition rule.

It decomposes E(Y7) into smaller/ easier conditional expectations.
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Conditional Expectation

A Closer Look At the Law of Total Expectation...

Suppose we have X and Y continuous RVs. Then, by the law of total
expectation, we have: E(X) = E{E(X]|Y)}.
WHY DOES THIS WORK?

We know E(X) is a constant/number and is simply

E(X) — / XfX (X)dX. def’n of expected value
Now, apply the def'n of expected value to E{E(X|Y)}:
EECXIV)} = [ EXIY = )feldy wevs

(cont'd next slide...)
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Conditional Expectation

Claim: E(X|Y) is a random variable.
What are the possible values of E(X|Y)7

> EX]Y =n)
> E(X]Y = y)
> E(X]Y =y,)

The value of E(X|Y') depends on the value of the random variable Y.
In fact, E(X|Y) is a function of the random variable Y.
Mathematically, we write this as: g(Y) = E(X]Y).

How to find the expectation of a function of the random variable Y7

Recall Theorem 4.4 in Lec 9, Slide 20:
Let g(Y) be a function of Y. Then the expected value of g(Y) is given by

E{g(Y)} = /jo g(y)fr(y)dy,

provided that the integral exists. (cont’d next slide...)
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Conditional Expectation

A Closer Look At the Law of Total Expectation... (cont'd)

o0
E{E(X| Y)} = / (X| Y = y)fy(y)dy prev. slide: E{g(Y)} = /71 g(y)fy(y)dy

:/ / V) dschy (y)dy

00
def'n of conditional expectation: E{g(Y1)|Y2 =y} = / g(y1)f(y1ly2)dys
oS

= / / X y)dXdy def’n of conditional PDF: f(y1|y2) = fin, y2)

= / X{ / f(X _y)d_y } dX rearranging

oo
== / XfX(X)dX def'n of marginal PDF: fi(y;) = /'X' f(y1, y2)dys

— 00

- E(X) . def'n of expected value

Same principle applies for discrete RV. O
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Conditional Expectation

Properties: Conditional Expectation

® Law of Total Variance: Let Y7 and Y3 be any two random variables.
Then,

V(Y1) = E{V("1|Y2)} + V{E(Y1|Y2)}.

Proof:

E(Y?) - {E(Yl)}2 def'n of variance: V(X) = E(X?) — {E(X)}?

E{E(Y?|Y2)} - [E{E(1|Y2))])?

law of total expectation: E(Y1) = E{E(Y1|Y2)}

= E[V([Y2) + {EM[Y2) Y] - [E{E(a|Y2)))?
def'n of variance: E(X?) = V(X) + {E(X)}?

= E{v(vi|Ya)} + EE(YA]Y2) Pl-[E{E(Va] Y2}
linearity of expectation

= E{v(n[¥2)} + V{EM|Y2)}.

def’n of variance: V(X) = E(XQ) {E(X)}2

V(Y1)

=
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Conditional Expectation

Example 7:
Let N be the number you get when you roll a die. Let H be the number of
heads after tossing a fair coin N times. Find E(H).

Solution:

E(H) = E{E(H‘N)} law of total expectation

Note: H is a Binomial RV with prob. of success and N num. of trials

N

N
= E 5 If X ~ B(n, p), E(X) = np. Here, n = N and p =

N |

1
= EE(N) linearity of expectation

1 1 1 1 1 1 1

def'n of expected value

35
= — =1.75.
2

O
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Bonus Exercise
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Bonus Exercise

Guess the correlation of X and Y...

If you guess the EXACT number: 410 pts
If you are close enough: +5 pts

Email your guess to: marylai.salvana@uconn.edu
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Questions?

Mary Lai Salvafia, Ph.D.
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Homework Exercises: 5.21, 5.23, 5.27, 5.35, 5.41
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