
STAT 3375Q: Introduction to Mathematical Statistics I
Lecture 19: Functions of Random Variables (Multivariate)

Mary Lai Salvaña, Ph.D.

Department of Statistics
University of Connecticut

April 10, 2024

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 19 1 / 46
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1 Previously...
▶ Functions of Random Variables (Univariate)
▶ The CDF Method
▶ The Jacobian Transformation Method
▶ The MGF Method

2 Functions of Random Variables (Multivariate)
▶ The Jacobian Transformation Method
▶ The MGF Method

3 Probability Integral Transform
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Previously...
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Functions of Random Variables (Univariate)

Original RV Transformed RV
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Functions of Random Variables (Univariate)

▶ Suppose we have a random variable X with PDF fX (x).
▶ Define a new random variable U = h(X ), where h is a (one-to-one)

monotone function.
▶ h(x) = ex

▶ h(x) = ln(x)
▶ h(x) =

√
x

▶ h(x) = x2

▶ What is the PDF of U?
▶ CDF Method
▶ Jacobian Method (PDF-to-PDF Method or change of variable)
▶ MGF Method
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The CDF Method

Suppose U = h(X ), where the original RV X has PDF fX (x).

▶ If h is an increasing function, the CDF of U is

FU(u) = FX{h−1(u)}.

▶ If h is a decreasing function, the CDF of U is

FU(u) = 1− FX{h−1(u)}.

▶ The PDF of U, fU(u) can be obtained by differentiation as follows:

fU(u) =
d

du
FU(u).
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The CDF Method

Lec 18 Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .

Visualizing the problem...
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The CDF Method

Lec 18 Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .
Solution:

▶ Domain of Z : (−∞,∞)

▶ Codomain of Y : (0,∞)

FY (y) = P(Y ≤ y) CDF def’n

= P(Z 2 ≤ y) transformation

= P (−√
y ≤ Z ≤ √

y) isolate the original RV

= P (Z ≤ √
y)− P (Z ≤ −√

y)

= Φ (
√
y)− Φ(−√

y) . CDF of the original RV: Standard Normal CDF Φ(z)

(cont’d next slide...)
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The CDF Method

Lec 18 Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .
Solution:

▶ Domain of Z : (−∞,∞)

▶ Codomain of Y : (0,∞)

fY (y) =
d

dy
{FY (y)} =

d

dy
{Φ(

√
y)} − d

dy
{Φ(−√

y)}

=
1

2
y−1/2 {ϕ (

√
y)} −

[
−1

2
y−1/2 {ϕ (−√

y)}
]

derivative of CDF Φ(z) is PDF ϕ(z); chain rule

=
1

2
√
y

1√
2π

e−
y
2 +

1

2
√
y

1√
2π

e−
y
2

=
1√
2πy

e−
y
2 .

This is the χ2(1) PDF.
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The CDF Method

Lec 18 Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .

Visualizing the problem...
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The Jacobian Transformation Method

Suppose U = h(X ), where the original RV X has PDF fX (x).

▶ The PDF of U, fU(u) can be obtained as follows:

fU(u) = fX{h−1(u)}

∣∣∣∣∣dh−1(u)

du

∣∣∣∣∣,
where | · | is the absolute value function and dh−1(u)

du is called the
Jacobian of the transformation.

▶ We need the following to obtain the new PDF:
▶ original PDF: fX (x)
▶ transformation function: u = h(x)
▶ inverse of the transformation: x = h−1(u)

▶ Jacobian: dh−1(u)
du
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The Jacobian Transformation Method

Lec 18 Re-doing Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .
Solution:

▶ Domain of Z : (−∞,∞) given

▶ Codomain of Y : (0,∞)

▶ Transformation: y = h(z) = z2 is monotone on (−∞, 0) and (0,∞) given

▶ Deriving the inverse of the transformation, h−1(y): (write z in terms of y)

y = z2

±√
y = z

Therefore, the inverse function is h−1
1 (y) =

√
y if z ≥ 0 and h−1

2 (y) = −√
y if

z < 0.

▶ Jacobian:
dh−1

1 (y)

dy
= d

dy

(√
y
)
= 1

2
y−1/2 if z ≥ 0 and

dh−1
2 (y)

dy
= d

dy

(
−√

y
)
= − 1

2
y−1/2 if z < 0.

(cont’d next slide...)
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The Jacobian Transformation Method

Lec 18 Re-doing Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .
Solution:

▶ Transformation: h(z) = z2

▶ Inverse: h−1
1 (y) =

√
y if z ≥ 0 and h−1

2 (y) = −√
y if z < 0

▶ Jacobian:
dh−1

1 (y)

dy
= 1

2
y−1/2 if z ≥ 0 and

dh−1
2 (y)

dy
= − 1

2
y−1/2 if z < 0

▶ Deriving the PDF of Y using the formula in the theorem (non-monotone):

fY (y) = fZ{h−1
1 (y)}

∣∣∣∣∣dh−1
1 (y)

dy

∣∣∣∣∣+ fZ{h−1
2 (y)}

∣∣∣∣∣dh−1
2 (y)

dy

∣∣∣∣∣
=

1√
2π

e−
(
√

y)2

2

∣∣∣1
2
y−1/2

∣∣∣+ 1√
2π

e−
(−√

y)2

2

∣∣∣−1

2
y−1/2

∣∣∣
formula for non-monotone functions

=
1√
2πy

e−
y
2 . This is the χ

2(1) PDF.

We arrived at the same PDF as the CDF method’s.
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The MGF Method

Suppose U = h(X ), where the original RV X has PDF fX (x).

To find the distribution of the transformation:

1 Derive the MGF of the transformed RV.

2 Compare the MGF of the transformed RV to the MGFs of known
distributions.

3 The distribution of the transformed RV follows the distribution of the
matching MGF.
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The MGF Method

Lec 18 Re-doing Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .
Solution:

▶ Derive the MGF of the transformed RV.

mY (t) = mZ2(t) = E (etZ
2
) def’n of MGF

=

∫ ∞

−∞
etz

2
f (z)dz def’n of expected value

=

∫ ∞

−∞
etz

2 1√
2π

e−
z2

2 dz Z is standard normal

=

∫ ∞

−∞

1√
2π

e−z2( 1−2t
2 )dz =

∫ ∞

−∞

1√
2π

e
− z2

2( 1
1−2t ) dz

the integrand resembles a Gaussian PDF with µ = 0 and σ
2 =

1

1 − 2t

(cont’d next slide...)
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The MGF Method

Lec 18 Re-doing Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .
Solution:

▶ Derive the MGF of the transformed RV. (cont’d)

mY (t) =

∫ ∞

−∞

1√
2π

e
− z2

2( 1
1−2t ) dz Recall the Gaussian PDF:

1
√
2πσ2

e
− (y−µ)2

2σ2

=

√
1

1− 2t

∫ ∞

−∞

1√
2π

1√
1

1−2t

e
− z2

2( 1
1−2t ) dz multiply a factor of 1

=
1√

1− 2t

∫ ∞

−∞

1√
2π 1

1−2t

e
− z2

2( 1
1−2t ) dz

=
1√

1− 2t
(1) Gaussian PDF integrates to 1

(cont’d next slide...)
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The MGF Method

Lec 18 Re-doing Example 4:

Let Z have the PDF ϕ(z) = 1√
2π
e−

z2

2 , −∞ ≤ z ≤ ∞.

Let Y = Z 2. Find the PDF of Y .
Solution:

▶ Derive the MGF of the transformed RV. (cont’d)

mY (t) =
1

(1− 2t)1/2
Recall Gamma MGF:

1

(1 − βt)α

Note that this is the MGF of a Gamma RV with α = 1/2 and β = 2.

Thus, Y is χ2 with ν = 1 degree of freedom.
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Functions of Random Variables (Multivariate)
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Functions of Random Variables (Multivariate)

▶ Suppose we have two random variables X1 and X2 with joint PDF
fX1,X2(x1, x2).

▶ Define new random variables U1 = h1(X1,X2) and U2 = h2(X1,X2),
where h1 and h2 are (one-to-one) monotone functions.

▶ What is the joint PDF of U1 and U2?
▶ Jacobian Method (PDF-to-PDF Method or change of variable)
▶ MGF Method
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The Jacobian Transformation Method
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The Jacobian Transformation Method

Theorem: The PDF-to-PDF Method (monotone)

Suppose that X1 and X2 are continuous RVs with joint PDF fX1,X2(x1, x2)
and that for all (x1, x2) such that fX1,X2(x1, x2) > 0,

u1 = h1(x1, x2) and u2 = h2(x1, x2),

are one-to-one transformations from (x1, x2) to (u1, u2) with inverse

x1 = h−1
1 (u1, u2) and x2 = h−1

2 (u1, u2).

If h−1
1 (u1, u2) and h−1

2 (u1, u2) have continuous partial derivatives with
respect to u1 and u2, and the determinant of the Jacobian matrix is not
equal to 0, then the joint PDF of U1 = h1(X1,X2) and U2 = h2(X1,X2) is

fU1,U2(u1, u2) = fX1,X2{h
−1
1 (u1, u2), h

−1
2 (u1, u2)}|J|,

where |J| is the absolute value of the Jacobian.

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 19 21 / 46



The Jacobian Transformation Method: How it Works

▶ We need the following to obtain the new joint PDF:
▶ original joint PDF: fX1,X2(x1, x2)
▶ transformations: u1 = h1(x1, x2) and u2 = h2(x1, x2)
▶ inverse of the transformation: x1 = h−1

1 (u1, u2) and x2 = h−1
2 (u1, u2)

▶ Jacobian: (determinant of the matrix of partial derivatives)

J =

∣∣∣∣∣
∂h−1

1 (u1,u2)
∂u1

∂h−1
1 (u1,u2)
∂u2

∂h−1
2 (u1,u2)
∂u1

∂h−1
2 (u1,u2)
∂u2

∣∣∣∣∣ ,
where | · | takes the determinant of the Jacobian matrix.
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The Jacobian Transformation Method

Example 1:
Let X1 and X2 have the joint PDF

fX1,X2(x1, x2) =

{
e−(x1+x2), for x1 ≥ 0, x2 ≥ 0,

0, elsewhere.

Consider two RVs U1 and U2 defined in the following manner:

U1 = X1 + X2 and U2 =
X1

X1 + X2
.

Find the joint PDF of U1 and U2.
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The Jacobian Transformation Method

Solution:

▶ Step 1: Identify the transformation. (new RVs = function of original RVs){
U1 = X1 + X2

U2 =
X1

X1+X2

⇒

{
u1 = h1(x1, x2) = x1 + x2

u2 = h2(x1, x2) =
x1

x1+x2

This means that if x1 ≥ 0, x2 ≥ 0, then u1 ≥ 0 and 0 ≤ u2 ≤ 1.

▶ Step 2: Deriving the inverse transformations, h−1
1 (u1, u2) and h−1

2 (u1, u2).
(original RVs = function of new RVs){
U1 = X1 + X2

U2 =
X1

X1+X2

⇒

{
X1 = U1 − X2

U2 =
X1

X1+X2

⇒

{
X1 = U1 − X2

U2 =
U1−X2

U1−X2+X2

⇒

{
X1 = U1 − X2

U2 =
U1−X2

U1

⇒

{
X1 = U1 − X2

U1U2 = U1 − X2

⇒

{
X1 = U1 − X2

X2 = U1 − U1U2

⇒

{
X1 = U1 − (U1 − U1U2)

X2 = U1 − U1U2

⇒

{
X1 = U1U2

X2 = U1 − U1U2.

Thus, the inverse transformations are

{
x1 = h−1

1 (u1, u2) = u1u2

x2 = h−1
2 (u1, u2) = u1 − u1u2.

(cont’d next slide...)
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The Jacobian Transformation Method

Solution:

▶ Step 3: Obtain the Jacobian of the inverse transformations:{
h−1
1 (u1, u2) = u1u2

h−1
2 (u1, u2) = u1 − u1u2.

J =

∣∣∣∣∣∣
∂h−1

1 (u1,u2)

∂u1

∂h−1
1 (u1,u2)

∂u2
∂h−1

2 (u1,u2)

∂u1

∂h−1
2 (u1,u2)

∂u2

∣∣∣∣∣∣ =
∣∣∣∣ u2 u1
1− u2 −u1

∣∣∣∣
= {−u2u1 − u1(1− u2)} = −u1. Recall determinant of a matrix formula: ad − bc

▶ Step 4: Apply the formula

▶ (Given) original joint PDF: fX1,X2(x1, x2) =

{
e−(x1+x2), for x1 ≥ 0, x2 ≥ 0,

0, elsewhere.

fU1,U2(u1, u2) = fX1,X2{h
−1
1 (u1, u2), h

−1
2 (u1, u2)}|J|

= e−(u1u2+u1−u1u2)|−u1|
= u1e

−u1 , u1 ≥ 0, 0 ≤ u2 ≤ 1.
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The Jacobian Transformation Method

Example 2: (Cartesian to Polar Transformation)
Let X and Y be independent standard normal random variables.

fX ,Y (x , y) =
1

2π
e−(x2+y2)/2, −∞ < x , y < ∞.

Consider the polar transformation:

X = R cosΘ and Y = R sinΘ.

Find the joint PDF of R and Θ.
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The Jacobian Transformation Method

Solution:

▶ Step 1: Identify the transformation. (new RVs = function of original RVs)
▶ Solving for R:{

X = R cosΘ

Y = R sinΘ
⇒

{
X 2 = R2 cos2 Θ

Y 2 = R2 sin2 Θ
⇒ X 2 + Y 2 = R2(cos2 Θ+ sin2 Θ)

⇒ X 2 + Y 2 = R2 ⇒ R =
√
X 2 + Y 2.

▶ Solving for Θ:{
X = R cosΘ

Y = R sinΘ
⇒ Y

X
= sin Θ

cos Θ
⇒ Y

X
= tanΘ ⇒ Θ = tan−1

(
Y
X

)
.

Therefore, the transformation is

{
r = h1(x1, x2) =

√
x2 + y 2

θ = h2(x1, x2) = tan−1
(
y
x

)
.

This means that if −∞ < x , y < ∞, then 0 < θ < 2π and 0 < r < ∞.

▶ Step 2: Deriving the inverse transformations, h−1
1 (u1, u2) and h−1

2 (u1, u2).
(original RVs = function of new RVs){
X = R cosΘ

Y = R sinΘ
(given) ⇒

{
x = h−1

1 (r , θ) = r cos θ

y = h−1
2 (r , θ) = r sin θ.

(cont’d next slide...)
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The Jacobian Transformation Method

Solution:

▶ Step 3: Obtain the Jacobian of the inverse transformations:{
h−1
1 (r , θ) = r cos θ

h−1
2 (r , θ) = r sin θ.

J =

∣∣∣∣∣ ∂h
−1
1 (r,θ)

∂r

∂h−1
1 (r,θ)

∂θ
∂h−1

2 (r,θ)

∂r

∂h−1
2 (r,θ)

∂θ

∣∣∣∣∣ =
∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣
= r cos2 θ − (−r sin2 θ) = r(cos2 θ + sin2 θ) = r .

Recall determinant of a matrix formula: ad − bc

▶ Step 4: Apply the formula

▶ (Given) original joint PDF: fX ,Y (x , y) =
1
2π
e−(x2+y2)/2, −∞ < x , y < ∞.

fR,Θ(r , θ) = fX ,Y {h−1
1 (r , θ), h−1

2 (r , θ)}|J|

=
1

2π
e−{(r cos θ)2+(r sin θ)2}/2|r |

=
1

2π
re−r2/2, 0 < θ < 2π, 0 < r < ∞.
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The Jacobian Transformation Method

Example 3: (Sum of Two Uniform RVs)
Let X1 and X2 be independent and identical U(0, 1) random variables.
Find the PDF of Y1 = X1 + X2.
Solution:

▶ The Jacobian method requires us to define a second transformation variable.

▶ Let Y2 = X2.

▶ Step 1: Identify the transformation. (new RVs = function of original RVs){
Y1 = X1 + X2

Y2 = X2

⇒

{
y1 = h1(x1, x2) = x1 + x2

y2 = h2(x1, x2) = x2

This means that if 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, then

▶ 0 ≤ x1 + x2 ≤ 2 ⇒ 0 ≤ y1 ≤ 2.
▶ 0 ≤ x2 ≤ 1 ⇒ 0 ≤ y2 ≤ 1.
▶ Since y1 = x1 + x2 ⇒ x1 = y1 − x2 ⇒ x1 = y1 − y2, then

0 ≤ y1 − y2 ≤ 1 ⇒ y2 ≤ y1 ≤ 1 + y2.

(cont’d next slide...)
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The Jacobian Transformation Method

Solution:
▶ Step 2: Deriving the inverse transformations, h−1

1 (y1, y2) and h−1
2 (y1, y2).

(original RVs = function of new RVs){
Y1 = X1 + X2

Y2 = X2

⇒

{
Y1 = X1 + Y2

X2 = Y2

⇒

{
X1 = Y1 − Y2

X2 = Y2.

Thus, the inverse transformations are

{
x1 = h−1

1 (y1, y2) = y1 − y2

x2 = h−1
2 (y1, y2) = y2.

▶ Step 3: Obtain the Jacobian of the inverse transformations:

J =

∣∣∣∣∣∣
∂h−1

1 (y1,y2)

∂y1

∂h−1
1 (y1,y2)

∂y2
∂h−1

2 (y1,y2)

∂y1

∂h−1
2 (y1,y2)

∂y2

∣∣∣∣∣∣ =
∣∣∣∣1 −1
0 1

∣∣∣∣ = (1)(1)− (−1)(0) = 1.

▶ Step 4: Apply the formula
▶ Since X1 and X2 be independent and identical U(0, 1),

fX1,X2(x1, x2) = fX1(x1)fX2(x2) = (1)(1) = 1.

fY1,Y2(y1, y2) = fX1,X2{h
−1
1 (y1, y2), h

−1
2 (y1, y2)}|J| = (1)|1| = 1,

y2 ≤ y1 ≤ 1 + y2, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1. (cont’d next slide...)
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The Jacobian Transformation Method

Solution:
▶ Joint PDF: fY1,Y2(y1, y2) = 1, y2 ≤ y1 ≤ 1 + y2, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1.

▶ Step 5: Obtain the marginal of Y1.
▶ If 0 < y1 < 1, then

fY1(y1) =
∫ y1
0

fY1,Y2(y1, y2)dy2 =
∫ y1
0

1dy2 = y2
∣∣y1
0

= y1.
▶ If 1 ≤ y1 < 2, then

fY1(y1) =
∫ 1

y1−1
fY1,Y2(y1, y2)dy2 =

∫ 1

y1−1
1dy2 = y2

∣∣1
y1−1

= 1−(y1−1) = 2−y1.
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The MGF Method
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The MGF Method

Theorem: MGF of a Sum of Independent RVs

Let Y1,Y2, . . . ,Yn be independent random variables with MGFs
mY1(t),mY2(t), . . . ,mYn(t), respectively. If U = Y1 + Y2 + . . .+ Yn, then

mU(t) = mY1(t)mY2(t) · · ·mYn(t)

Proof:

mU(t) = E
(
etU

)
def’n of MGF

= E
{
et(Y1+Y2+...+Yn)

}
given: U = Y1 + Y2 + . . . + Yn

= E
(
etY1etY2 · · ·+ etYn

)
= E

(
etY1

)
E
(
etY2

)
· · ·E

(
etYn

)
independence

= mY1(t)mY2(t) · · ·mYn(t). def’n of MGF
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The MGF Method

Theorem: Sum of Independent Gaussian RVs

Let Y1,Y2, . . . ,Yn be independent Gaussian RVs with E (Yi ) = µi and
V (Yi ) = σ2

i , for i = 1, 2, . . . , n, and let a1, a2, . . . , an be constants. If

U =
n∑

i=1

aiYi = a1Y1 + a2Y2 + . . .+ anYn,

then U is a Gaussian RV with

E (U) =
n∑

i=1

aiµi = a1µ1 + a2µ2 + . . .+ anµn,

and

V (U) =
n∑

i=1

a2i σ
2
i = a21σ

2
1 + a22σ

2
2 + . . .+ a2nσ

2
n.
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The MGF Method

Proof:

maiYi
(t) = E

(
etaiYi

)
def’n of MGF

= mYi
(ai t) MGF of linear transformation

= eµiai t+
σ2
i a

2
i t

2

2 . Yi is Gaussian with mean µi and variance σ
2
i ; MGF Gaussian RV

mU(t) = m∑n
i=1 aiYi

(t)

= ma1Y1(t)ma2Y2(t) · · ·manYn(t) Theorem on MGF of a Sum of Independent RVs

= eµ1a1t+
σ2
1a

2
1t

2

2 eµ2a2t+
σ2
2a

2
2t

2

2 · · · eµnant+
σ2
na

2
nt

2

2 MGF of each aiYi

= et
∑n

i=1 aiµi+
t2

2

∑n
i=1 a

2
i σ

2
i .

Matching the MGF above to the list of popular MGFs, this is the MGF of
a Gaussian RV with mean

∑n
i=1 aiµi and variance

∑n
i=1 a

2
i σ

2
i .

Therefore, U ∼ N
(∑n

i=1 aiµi ,
∑n

i=1 a
2
i σ

2
i

)
.
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The MGF Method

Example 4:
Define V =

∑n
i=1 Z

2
i , where Zi , i = 1, . . . , n are independent and identical

N (0, 1) RVs. Find the PDF of V .

mV (t) = m∑n
i=1 Z

2
i
(t)

= mZ2
1
(t)mZ2

2
(t) · · ·mZ2

n
(t) Theorem on MGF of a Sum of Independent RVs

=
1

(1− 2t)1/2
1

(1− 2t)1/2
· · · 1

(1− 2t)1/2

Lec 18, Ex. 4: Z2
i is χ

2(1); MGF of χ2(1) =
1

(1 − 2t)1/2

=
1

(1− 2t)n/2
.

Matching the MGF above to the list of popular MGFs, this is the MGF of
a Gamma RV with α = n/2 and β = 2.

Therefore, V ∼ χ2
(n).
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Probability Integral Transform
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Probability Integral Transform

Theorem: Probability Integral Transform

1 Let X have a continuous and strictly increasing CDF FX (x). Define
U = FX (X ). Then, U ∼ U(0, 1).

2 Let U ∼ U(0, 1) and let F be a continuous CDF with quantile
function F−1. Let X = F−1(U) Then, X has CDF F (x).

▶ This theorem tells us how to generate random numbers from any
distribution.

▶ If F−1 is available in closed form, we can simply generate uniform
random numbers and then transform them using F−1.

▶ Thus, much of the effort in generating random numbers is focused on
generating uniform random numbers.
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Probability Integral Transform

Theorem: Probability Integral Transform

1 Let X have a continuous and strictly increasing CDF FX (x). Define
U = FX (X ). Then, U ∼ U(0, 1).

2 Let U ∼ U(0, 1) and let F be a continuous CDF with quantile
function F−1. Let X = F−1(U) Then, X has CDF F (x).

Proof of (1): (need to show that U is a U(0, 1) RV)

FU(u) = P {FX (X ) ≤ u} def’n of CDF

= P
[
F−1
X {FX (X )} ≤ F−1

X (u)
]

apply inverse function to both sides

= P
{
X ≤ F−1

X (u)
}

def’n of inverse function: f−1{f (x)} = x

= FX{F−1
X (u)} def’n of CDF

= u. def’n of inverse function: f−1{f (x)} = x

This is the CDF of a uniform RV over the interval (0, 1). Hence, U ∼ U(0, 1).

This tells us that if we apply the CDF of a RV to itself, we will get a U(0, 1) RV...
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Probability Integral Transform

Theorem: Probability Integral Transform

1 Let X have a continuous and strictly increasing CDF FX (x). Define
U = FX (X ). Then, U ∼ U(0, 1).

2 Let U ∼ U(0, 1) and let F be a continuous CDF with quantile
function F−1. Let X = F−1(U) Then, X has CDF F (x).

Proof of (2): (need to show that P(X ≤ x) = F (x))

P(X ≤ x) = P
{
F−1(U) ≤ x

}
given transformation

= P
[
F
{
F−1(U)

}
≤ F (x)

]
apply function to both sides

= P {U ≤ F (x)} def’n of inverse function: f−1{f (x)} = x

= FU{F (x)} def’n of CDF

= F (x). CDF of a uniform RV

This tells us that we can obtain any desired RV by applying the inverse CDF to a

U(0, 1) RV...
Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 19 40 / 46



Probability Integral Transform

Example 5:
Find a transformation G (U) such that if U has a uniform distribution on
(0, 1), the G (U) has a uniform distribution on (3, 5).

Solution:
▶ Define the new RV: Let X = G(U).

▶ By the probability integral transform theorem, the CDF of X is G−1(x).

▶ We want X to be uniform on (3, 5). given

▶ This means that the CDF of X has the form G−1(x) = x−3
2

.

Lec 14, Slide 4: CDF of U(a, b) : F (x) =


0, x < θ1
x−θ1
θ2−θ1

, θ1 ≤ x ≤ θ2

1, x > θ2.

▶ To solve for the transformation G(U), we need to find the inverse of G−1(x).

▶ Let u = x−3
2 .

▶ Isolate x : u = x−3
2 −→ 2u = x − 3 −→ x = 2u + 3.

▶ Therefore, the required transformation of U is G (U) = 2U + 3.
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Probability Integral Transform

Example 5:
Find a transformation G (U) such that if U has a uniform distribution on
(0, 1), the G (U) has a uniform distribution on (3, 5).

Visualizing the problem...
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Probability Integral Transform

Example 6:
Find a transformation G (U) such that if U has a uniform distribution on
(0, 1), the G (U) has an exponential distribution with β = 1.

Solution:
▶ Define the new RV: Let X = G(U).

▶ By the probability integral transform theorem, the CDF of X is G−1(x).

▶ We want X to be Exp(1). given

▶ This means that the CDF of X has the form G−1(x) = 1− e−x .

Lec 14, Slide 5: CDF of exponential RV: F (x) =

{
0, x < 0

1 − e−x , 0 ≤ x < ∞

▶ To solve for the transformation G(U), we need to find the inverse of G−1(x).

▶ Let u = 1− e−x .
▶ Isolate x : u = 1− e−x −→ e−x = 1− u −→ x = − ln(1− u).
▶ Therefore, the required transformation of U is G (U) = − ln(1− U).
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Probability Integral Transform

Example 6:
Find a transformation G (U) such that if U has a uniform distribution on
(0, 1), the G (U) has an exponential distribution with β = 1.

Visualizing the problem...
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Questions?
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Homework Exercises: 6.15, 6.20, 6.23, 6.28, 6.46
Solutions will be discussed this Friday by the TA.
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