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Functions of Random Variables (Univariate)
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Functions of Random Variables (Univariate)

Suppose we have a random variable X with PDF fx(x).

Define a new random variable U = h(X), where h is a (one-to-one)
monotone function.

> h(x) =€~

> h(x) =In(x)
> h(x) = v/x
> h(x) = x?

What is the PDF of U?
» CDF Method

» Jacobian Method (PDF-to-PDF Method or change of variable)
» MGF Method
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The CDF Method

Suppose U = h(X), where the original RV X has PDF fx(x).

If his an increasing function, the CDF of U is
Fu(u) = Fx{h™"(u)}.
If his a decreasing function, the CDF of U is
Fu(u) =1 — Fx{h *(u)}.
The PDF of U, fy(u) can be obtained by differentiation as follows:

fulu) = 5 Fuls).
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The CDF Method

Lec 18 Example 4:

2
—Zz
Let Z have the PDF ¢(z) = \/%e 2, —o0 <z < o0.
Let Y = Z2. Find the PDF of Y.
Visualizing the problem...
Index Index
- 7 e What distribution is this?
g T T T T T T = 1 g r T T T T T 1
3 2 -1 0 1 2 3 0 2 4 6 8 10 12

y
Mary Lai Salvafia, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 19

7/ 46



The CDF Method

Lec 18 Example 4:
Let Z have the PDF ¢(z) = \/%e

Let Y = Z2. Find the PDF of Y.
Solution:

2, —00<z< 0.

Domain of Z: (—o0,o0)

Codomain of Y: (0, 00)

Fyv(y) = P(Y <y) cDFdefn

P(Z2 S y) transformation

P (—\/_)7 § V4 § \/y) isolate the original RV
P(Z<Vy)—P(Z<—VY)

= [0) (\/y) )] (—\/)7) . CDF of the original RV: Standard Normal CDF ®(z)

(cont'd next slide...)
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The CDF Method

Lec 18 Example 4:
Let Z have the PDF ¢(z) 1
Let Y = Z2. Find the PDF of Y.

Solution:

Domain of Z: (—o0,o0)
Codomain of Y: (0, c0)

d

fly) = di’y{Fv(y)}:;"ym(m}—@w—m}

1

= O - |3 e (V)

derivative of CDF ®(z) is PDF ¢(z); chain rule

1 1
= P — e 2
2\/y 2r
1 _y
= \/Te 2,
Ty
This is the x?(1) PDF.
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The CDF Method

Lec 18 Example 4:

2
Z
Let Z have the PDF ¢(z) = ——=e~ 7, —00 < z < 0.
et ave the o(2) o€ 7, —00<z< 0
Let Y = Z2. Find the PDF of Y.
Visualizing the problem...
0 200 400 600 800 1000
Index Index
. e What distribution is this? x{;
g T T T T T T = 1 g r T ...(.>-...f------\- ------  E— 1
3 2 -1 0 1 2 3 0 2 4 6 8 10 12

y
Mary Lai Salvafia, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics | Lec 19 10 / 46



The Jacobian Transformation Method

Suppose U = h(X), where the original RV X has PDF fx(x).
The PDF of U, fy(u) can be obtained as follows:

dh=*(u)

fuls) = el ()} =

)

—1
where | - | is the absolute value function and th(”) is called the
Jacobian of the transformation.

We need the following to obtain the new PDF:
» original PDF: fx(x)
> transformation function: u = h(x)
» inverse of the transformation: x = h~*(u)
>

[¢)

. dh~(u
Jacobian: %
u
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The Jacobian Transformation Method

Lec 18 Re-doing Example 4:

22
Let Z have the PDF ¢(z) = \/%e_T, —00 <z < 0.
Let Y = Z2. Find the PDF of Y.

Solution:
Domain of Z: (—00,00)  given
Codomain of Y: (0,00)

Transformation: y = h(z) = z°

Deriving the inverse of the transformation, h=*(y): (write z in terms of y)

y = 2

ty = z

is monotone on (—00,0) and (0,00)  given

Therefore, the inverse function is h; ' (y) = /y if z> 0 and hy'(y) = —/y if

z < 0.

Jacoblan dhy ()

o = (Vy) =3y V?if 2> 0and
( ):72 “1/24f 7 < 0.
(cont’d next shde...)
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The Jacobian Transformation Method

Lec 18 Re-doing Example 4:

Let Z have the PDF ¢(z) = \/127e77, —00 < z < 0.

Let Y = Z2. Find the PDF of Y.

Solution:

Transformation: h(z) = 2°
Inverse: h, '(y) = /yifz>0and h, '(y) = —/yifz<0

dh My) 1

—1
Jacobian: Y f§y71/2 if z>0 and thT(y):féyfl/Z if z<0

Deriving the PDF of Y using the formula in the theorem (non-monotone):

dhy ' (y) dhy *(v)
fr(y) = fz{h ")} + 2 {h () zdiy
1 w1 1 _Ew?p 1
_ o2 ‘7}/ I e g ’77)/ 1/2’
Vor 2 2r 2
formula for non-monotone functions
1 -3 , L
= —¢€ . This is the x“(1) PDF.
2y the x“(1)
We arrived at the same PDF as the CDF method’s.
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The MGF Method

Suppose U = h(X), where the original RV X has PDF fx(x).

To find the distribution of the transformation:
® Derive the MGF of the transformed RV.

® Compare the MGF of the transformed RV to the MGFs of known
distributions.

©® The distribution of the transformed RV follows the distribution of the
matching MGF.
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The MGF Method

Lec 18 Re-doing Example 4:

Let Z have the PDF ¢(z) = Le 7, —0<z< 0.

Let Y = Z2. Find the PDF of Y.
Solution:

Derive the MGF of the transformed RV.

my(t) = mp(t) = fzz)

\\
88

def'n of MGF

dZ def'n of expected value

z
2 dZ Z is standard normal

27r
fe'e) —_
~#(15) LR
= dz = e "\ 7 dz
—oo V2T
. . 2 1
the integrand resembles a Gaussian PDF with x = 0 and o = T
—2t
f .
(cont'd next slide...)
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The MGF Method

Lec 18 Re-doing Example 4:

22
Let Z have the PDF ¢(z) = \/%e_T, —o0 < z < oo0.
Let Y = Z2. Find the PDF of Y.

Solution:
Derive the MGF of the transformed RV. (cont’'d)

22

T2 1 V=R
mY(t) = / 76 (1 Zt) dz  Recall the Gaussian PDF kf‘ 202

= 1 Zt) dz multiply a factor of 1
Vio 2t/ ,ﬁ F
/ 77%) dz
1-2t /271 5

= (1) Gaussian PDF integrates to 1

\/172

(cont’d next slide...)
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The MGF Method

Lec 18 Re-doing Example 4:
Let Z have the PDF ¢(z) = \/%re
Let Y = Z2. Find the PDF of Y.

Solution:

Derive the MGF of the transformed RV. (cont'd)

2, —o00 <z < o0.

— 1 1
mY(t) = m Recall Gamma MGF 1 poe

Note that this is the MGF of a Gamma RV with & =1/2 and = 2.

Thus, Y is x? with v = 1 degree of freedom.
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Functions of Random Variables (Multivariate)
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Functions of Random Variables (Multivariate)

Suppose we have two random variables X; and X5 with joint PDF
fX1,X2(X1a X2).

Define new random variables U; = hi(X1, X2) and Uz = ha( Xy, X2),
where h; and hy are (one-to-one) monotone functions.

What is the joint PDF of U; and Uy?

» Jacobian Method (PDF-to-PDF Method or change of variable)
» MGF Method
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The Jacobian Transformation Method
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The Jacobian Transformation Method

Theorem: The PDF-to-PDF Method (monotone)

Suppose that X; and X5 are continuous RVs with joint PDF thXZ(Xl,XQ)
and that for all (x1, x2) such that fx, x,(x1,x2) > 0,

up = hi(x1,x2) and w> = ha(x1, x2),
are one-to-one transformations from (x1, x2) to (u1, u2) with inverse
X1 = hl_l(ul, w) and xp = hz_l(ul, u).

If hy *(u1, u2) and hy*(u1, up) have continuous partial derivatives with
respect to u; and up, and the determinant of the Jacobian matrix is not
equal to 0, then the joint PDF of U; = hl(Xl,XQ) and Us = hz(Xl,Xz) is

fun,us (U1, 12) = Fx 3o {hy H (ur, u2), by *(ur, w2) }|J),

where |J| is the absolute value of the Jacobian.

v
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The Jacobian Transformation Method: How it Works

We need the following to obtain the new joint PDF:

original joint PDF: fx, x,(x1, x2)

transformations: u; = hy(x1, x2) and tp = hy(x1, x2)

inverse of the transformation: x; = hfl(ul, up) and x; = h;l(ul, us)
Jacobian: (determinant of the matrix of partial derivatives)

vvyyy

6hf1(u1,uQ) 6h;1(U1,U2)

— oy duy
J Dhgl(ul,UQ) E)h;l(ul,uQ) ’
Ouy Oup

where | - | takes the determinant of the Jacobian matrix.
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The Jacobian Transformation Method

Example 1:
Let X7 and X; have the joint PDF

67(X1+X2), for xy > 0,x > 0,

0, elsewhere.

fx, %, (X1, x2) = {

Consider two RVs U; and U, defined in the following manner:

X1
Uu=X1+Xo and U= —"—.
X1+ X2
Find the joint PDF of U; and Us.
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The Jacobian Transformation Method

Solution:

Step 1: Identify the transformation. (new RVs = function of original RVs)
{Ul—X1+X2 {Ul—hl(XI,X2)—X1+X2

X1

X1
U2 = X +X;

X1+x2

u = /’I2(X17X2) =
This means that if x; > 0,x; > 0, then v1 > 0and 0 < wp < 1.

Step 2: Deriving the inverse transformations, hy*(u1, u2) and hy *(u1, u2).
(original RVs = function of new RVs)

{U1:X1+X2 {X1=U1—X2 {X1=U1—X2
= =

X X Ui —Xo
U= 7% U = 375 U = 52575

X1:U1_X2 X1:U1—X2 Xl—U1*X2

T = v Ul =Ui—X = X =U — UU
Q—T 1U2 — 1 — 2 2 — 1 — 1U2
X1 = U — (Ui — Ui Us) X1 = Ui Us

= =
X2:U1_U1U2 X2=U1—U1U2.

-1
. . X1 = h ui, ux) = uiuz
Thus, the inverse transformations are 1_1( 2 t2)
X2 = h2 (U1, Uz) = u — uruz.
(cont’d next slide...)
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The Jacobian Transformation Method

Solution:

Step 3: Obtain the Jacobian of the inverse transformations:

{/71 L(ul. ) = u U

h;l(ul, Uz) = U — urus.

-1 —1
Oh; “(u,up)  Ohy “(ur,up)
J = g g | 2
Ohy “(ur,up)  Ohy “(ur,up) l1—w —w
ouy Oup
= {—U2U1 — Ul(l — U2)} = —Uu. Recall determinant of a matrix formula: ad — bc

Step 4: Apply the formula

e~ tat) - for x; > 0,x > 0,

> (Given) original joint PDF: fx, x,(xi,x) =
0, elsewhere.

funup(un, ) = g {hy (0 i), by (ur, w2) 1|
e—(mm+l/17uluz)|7u1‘

= wme ™, wm>0 0<w<1l 0O
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The Jacobian Transformation Method

Example 2: (Cartesian to Polar Transformation)
Let X and Y be independent standard normal random variables.

1 (X2+y2)/2,

fxy(x,y)= ge_ —00 < X,y < 00.

Consider the polar transformation:
X =Rcos® and Y = Rsin©O.

Find the joint PDF of R and ©. ER

0.0 05 1.0 15 20 25
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The Jacobian Transformation Method

Solution:

Step 1: Identify the transformation. (new RVs = function of original RVs)
> Solving for R:

X = Rcos© X? = R?cos’ ©

. = 2 22

Y = Rsin© Y= R"sin“©

=X+ Y =R =R=VX2+Y2

> Solving for ©:

{X = Rcos©

= X2+ Y? = R*(cos’ © +sin? ©)

_ sin® Y _ _ —1/Y
= = ¢y =tan® = © =tan (Y)

cos ©

=

x|<

Y = Rsin®

= h = /X2 1 2
Therefore, the transformation is r 1(x1, %) x 1+y
0 = hy(x1,x) = tan™ (g) .
This means that if —oo < x,y < 00, then 0 < 0 < 27 and 0 < r < 0.

Step 2: Deriving the inverse transformations, hy*(u1, u2) and hy *(u1, u2).
(original RVs = function of new RVs)

X = Rcos® RN x=h7Y(r,0) = rcosf
Y = Rsin®© e y = hy!(r,0) = rsiné.
(cont’d next slide...)
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The Jacobian Transformation Method

Solution:

Step 3: Obtain the Jacobian of the inverse transformations:

h;(r,0) = rcos@
hyY(r,0) = rsiné.

anTY(r,0)  ohY(r,6)

«
|

7 7
Ohy *(r,0) dhy *(r,0)
or o0

= rcos’ 0 — (—rsin’0) = r(cos’ 0 +sin’ 0) = r.

sinf  rcosf

cosf —rsin 0‘

Recall determinant of a matrix formula: ad — bc

Step 4: Apply the formula

> (Given) original joint PDF: fx v(x,y) = %ef(xzﬂ%ﬂ, —00 < X,y < 00.
fro(r,0) = foy{h '(r0),h ' (r,0)}]]
1 _ ; ; /
— Ee {(/co:.H)2+(rs|né))2}/2‘r‘
1
= 2—ref'2/2, 0<f<2mr, 0<r<oo [
T
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The Jacobian Transformation Method

Example 3: (Sum of Two Uniform RVs)
Let X; and X be independent and identical (0, 1) random variables.
Find the PDF of Y1 = X1 + Xo.

Solution:
The Jacobian method requires us to define a second transformation variable.
Let Yo = Xo.
Step 1: Identify the transformation. (new RVs = function of original RVs)
{Y1—X1+X2 N {}/1—h1(X1,X2)—X1 + X0
Yo =Xz y2 = ha(x1, %) = x2
This means that if 0 < x3 < 1,0 < x» <1, then

P 0<xi+x<2=0<y <2

> 0<0<1l=>0< <1

> Sinceysr =x1+x = x1 =y1 —>x = x1 =y — ), then
0<y—y<l=p<yn<l+ty

(cont’d next slide...)
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The Jacobian Transformation Method

Solution:

Step 2: Deriving the inverse transformations, h;*(y1, y2) and hy '(y1, y2).
(original RVs = function of new RVs)

Yi=X1+ Xz Yi=Xi+ Y2 Xi=Y1—Y
Yo = Xo Xo =Y, Xo = Y.

x=htyLy)=y—y
xo = hy H(yi,y2) = yo.
Step 3: Obtain the Jacobian of the inverse transformations:

Thus, the inverse transformations are {

Ohy1ya)  Oh (1) 1 -1
_ Iy1 Ay — = —(— —
J = ahz_l(h,yz) ahz_l()’l,yz) - ‘0 1 ’ - (1)(1) ( 1)(0) =1
Oy1 Ay»

Step 4: Apply the formula
> Since Xi and X, be independent and identical ¢/(0, 1),

fxi 6 (X1, 2) = iy (x1)fx, (x2) = (1)(1) = 1.
thYz(ylv}Q) = lezxz{hl_l(yly.)/?): h2_1(y17y2)}|J‘ = (1)‘1| =1,

2<yn<1l4+y,0<y<2,0<y, <1 (cont’d next slide...)
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The Jacobian Transformation Method

Solution:

Joint PDF: fy, v, (y1,02) =1, y2<y1 <14y, 0 < y1 <2, 0 < y2 < 1.
Xa Y%

X, Y

Step 5: Obtain the marginal of Y;.
> If 0 < y1 <1, then

fri(y1) = [ v (v, y2)dya = [ 1dy» =
> If 1 <y <2, then

1
(1) = [,y Frve (v ye)dys = [ 1dys = vl , =1-(n-1) =2-y.

Sum of Two UNIF(0,1) D

|Y1

0o =N

00 02 04 06 08 10
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The MGF Method
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The MGF Method

Theorem: MGF of a Sum of Independent RVs

Let Y1, Ys,..., Y, be independent random variables with MGFs
my, (t), my,(t), ..., my,(t), respectively. If U= Y1+ Yo+...4+ Y}, then

my(t) = my,(t)my,(t) - my,(t)

Proof:

mu(t) = etU) def'n of MGF

£ (
== E {et(Yl+Y2++Yn)} givenn U=Y1+ Yo+ ...+ Y,
dl

= my,(t)my,(t)---my,(t). crnormce [
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The MGF Method

Theorem: Sum of Independent Gaussian RVs

Let Y1, Ya,..., Y, be independent Gaussian RVs with E(Y;) = p; and
V(Y;) =02, fori=1,2,...,n, and let a1, as, ..., a, be constants. If

UZZQ,‘Y,‘231Y1-|-32Y2—|-...+a,,yn,

then U is a Gaussian RV with
n
E(U) = Zai,ui = aju1 + a2 + ...+ anftn,
i=1
and

E afo} = ajoi + 3305 + ... + ayop.
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The MGF Method

Proof:
maiyl.(t) = E (eta,-Y,-) def'n of MGF
= mYI(a, ) MGF of linear transformation
2
7

2 2
e/t,'a,'t+ 2’

5
Y; is Gaussian with mean p; and variance o;; MGF Gaussian RV

my(t) = myr Ly (t)
- mal Yl (t)ma2 Y2(t) s man Yn(t) Theorem on MGF of a Sum of Independent RVs

2 2 2.2.2
t t
2 e e/‘nan’f?L ——

2.2
o
i@

= etart+ 5 e/1232t+

n . t2 n 2 2
= etXimaititFdi, 807

MGF of each a;Y;

Matching the MGF above to the list of popular MGFs, this is the MGF of

a Gaussian RV with mean >"" | a;; and variance Y ", a%0?.

Therefore, U ~ N (371 ajpi, Y0 q a%0?). O
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The MGF Method

Example 4:
Define V =31, Z,-z, where Z;, i = 1,..., n are independent and identical
N(0,1) RVs. Find the PDF of V.

my(t) = myn 7(t)
= mzf(t)ng(t) e mzs(t) Theorem on MGF of a Sum of Independent RVs
B 1 1 1
T o@-202(1-20)12  (1-20)12
Lec 18, Ex. 4: Z7 is x*(1); MGF of x*(1) o ;)l 5
_ 1
o (1=2t)n/?

Matching the MGF above to the list of popular MGFs, this is the MGF of
a Gamma RV with a = n/2 and 5 = 2.

Therefore, V ~ X%n)' Ol
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Probability Integral Transform
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Probability Integral Transform

Theorem: Probability Integral Transform

@ Let X have a continuous and strictly increasing CDF Fx(x). Define
U= Fx(X). Then, U ~ U(0,1).

@® Let U ~U(0,1) and let F be a continuous CDF with quantile
function F~1. Let X = F~1(U) Then, X has CDF F(x).

This theorem tells us how to generate random numbers from any
distribution.

If F~1 is available in closed form, we can simply generate uniform
random numbers and then transform them using F 1.

Thus, much of the effort in generating random numbers is focused on
generating uniform random numbers.
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Probability Integral Transform

Theorem: Probability Integral Transform

@ Let X have a continuous and strictly increasing CDF Fx(x). Define
U = Fx(X). Then, U~ (0,1).

@® Let U ~U(0,1) and let F be a continuous CDF with quantile
function F~1. Let X = F~1(U) Then, X has CDF F(x).

Proof of (1): (need to show that U is a 14(0, 1) RV)
Fu(u) = P{Fx(X) <u} defnof cOF
= P [F;l {Fx(X)} < F;l(u)] apply inverse function to both sides
= P {X < F;l(u)} def'n of inverse function: f~1{f(x)} = x
= Fx{Fx'(u)} dernorcor

= U. def'n of inverse function fﬁl{f(x)} =x

This is the CDF of a uniform RV over the interval (0,1). Hence, U ~ U(0, 1). O

This tells us that if we apply the CDF of a RV to itself, we will get a 2/(0,1) RV...
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Probability Integral Transform

Theorem: Probability Integral Transform

@ Let X have a continuous and strictly increasing CDF Fx(x). Define
U= Fx(X). Then, U~ U(0,1).

® Let U ~U(0,1) and let F be a continuous CDF with quantile
function F~1. Let X = F~1(U) Then, X has CDF F(x).

Proof of (2) (need to show that P(X < x) = F(x))
P(X S X) = P {Fﬁl(U) S X} given transformation

= P |:F {F_I(U)} S F(X)] apply function to both sides
= P{U S F(X)} def'n of inverse function: f {f(x)} = x
= Fu{F(x)} defnof COF

= F(x). CDF of a uniform RV

This tells us that we can obtain any desired RV by applying the inverse CDF to a
U(0,1) RV...
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Probability Integral Transform

Example b:

Find a transformation G(U) such that if U has a uniform distribution on
(0,1), the G(U) has a uniform distribution on (3,5).

Solution:
Define the new RV: Let X = G(U).
By the probability integral transform theorem, the CDF of X is G~!(x).
We want X to be uniform on (3,5).  given
This means that the CDF of X has the form G'(x) = *32.
Lec 14, Slide 4: CDF of U(a, b) : F(x) = {O; o1 ;1  UL < 0,

0, —01

1, x> 0.
To solve for the transformation G(U), we need to find the inverse of G~!(x).

> Let u= 33
> [solate x: u:x2;3—>2u:x—3—>x:2u+3.

> Therefore, the required transformation of U is G(U) = 2U + 3. O
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Probability Integral Transform

Example b:
Find a transformation G(U) such that if U has a uniform distribution on
(0,1), the G(U) has a uniform distribution on (3,5).

Visualizing the problem...

U~Uniform(0,1) o X=2U+3
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Probability Integral Transform

Example 6:

Find a transformation G(U) such that if U has a uniform distribution on
(0,1), the G(U) has an exponential distribution with 5 = 1.

Solution:
Define the new RV: Let X = G(U).
By the probability integral transform theorem, the CDF of X is G~!(x).
We want X to be Exp(1).  given

This means that the CDF of X has the form G7}(x) =1 — e~

IO. x <0
Il e X, 0<x< o

Lec 14, Slide 5: CDF of exponential RV: F(x)
To solve for the transformation G(U), we need to find the inverse of G™!(x).
> letu=1—e""
> Isolatex: u=1—e*— e *=1—u—x=—In(1-u).
> Therefore, the required transformation of U is G(U) = —In(1 — U).
O
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Probability Integral Transform

Example 6:
Find a transformation G(U) such that if U has a uniform distribution on
(0,1), the G(U) has an exponential distribution with 5 = 1.

Visualizing the problem...

U~Uniform(0,1) X =-In(1-U)
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Questions?

Mary Lai Salvafia, Ph.D.
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Homework Exercises: 6.15, 6.20, 6.23, 6.28, 6.46
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