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Previously...
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Functions of Random Variables (Multivariate)

▶ Suppose we have two random variables X1 and X2 with joint PDF
fX1,X2(x1, x2).

▶ Define new random variables U1 = h1(X1,X2) and U2 = h2(X1,X2),
where h1 and h2 are (one-to-one) monotone functions.

▶ What is the joint PDF of U1 and U2?
▶ Jacobian Method (PDF-to-PDF Method or change of variable)
▶ MGF Method
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The Jacobian Transformation Method

Suppose U1 = h1(X1,X2) and U2 = h2(X1,X2) such that has X1 and X2

has joint PDF fX1,X2(x1, x2).

▶ The joint PDF of U1 and U2, fU1,U2(u1, u2) can be obtained as follows:

fU1,U2(u1, u2) = fX1,X2{h
−1
1 (u1, u2), h

−1
2 (u1, u2)}|J|,

where |J| is the absolute value of the Jacobian.

▶ We need the following to obtain the new PDF:
▶ original joint PDF: fX1,X2(x1, x2)
▶ transformations: u1 = h1(x1, x2) and u2 = h2(x1, x2)
▶ inverse of the transformation: x1 = h−1

1 (u1, u2) and x2 = h−1
2 (u1, u2)

▶ Jacobian: (determinant of the matrix of partial derivatives)

J =

∣∣∣∣∣
∂h−1

1 (u1,u2)
∂u1

∂h−1
1 (u1,u2)
∂u2

∂h−1
2 (u1,u2)
∂u1

∂h−1
2 (u1,u2)
∂u2

∣∣∣∣∣ ,
where | · | takes the determinant of the Jacobian matrix.
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The MGF Method

▶ MGF of a sum of independent RVs:
If U = Y1 + Y2 + . . .+ Yn, then

mU(t) = mY1(t)mY2(t) · · ·mYn(t)

▶ Distribution of a sum of independent Gaussian RVs:
Suppose Yi ∼ N

(
µi , σ

2
i

)
are independent Gaussian RVs. If

U =
∑n

i=1 aiYi , then U ∼ N
(∑n

i=1 aiµi ,
∑n

i=1 a
2
i σ

2
i

)
.
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Probability Integral Transform

▶ Let X have a continuous and strictly increasing CDF FX (x). Define
U = FX (X ). Then, U ∼ U(0, 1).

▶ Let U ∼ U(0, 1) and let F be a continuous CDF with quantile
function F−1. Let X = F−1(U) Then, X has CDF F (x).
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Order Statistics
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Order Statistics: Introduction

▶ Order statistics is concerned with distributions of random variables
that follow a certain order.

▶ Notation for ordered RVs: Y(1),Y(2), . . . ,Y(n), where
Y(1) ≤ Y(2) ≤ . . . ≤ Y(n).

▶ Y(k) is the kth smallest Y , also called the kth order statistics.

▶ We will be more interested in the two extreme RVs:

Y(1) = min(Y1,Y2, . . . ,Yn) = Ymin

Y(n) = max(Y1,Y2, . . . ,Yn) = Ymax
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Order Statistics: Motivation

Extreme events are record-shattering...

Extraordinary rainfall that historically would have been extremely rare...
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Order Statistics: Motivation

Extreme events are costly...

Economic losses per disaster: tropical cyclones (green), floods (blue), droughts (orange),
and wildfires (red). Source: Raymond et al. (2020)
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Order Statistics: Motivation

Modeling extreme events is important for disaster risk management...

The Oosterschelde barrier / Eastern Scheldt storm surge barrier is the largest of the 13
dams under the Delta Works in Netherlands.

▶ Delta Works is a system of flood defense structures built as a response to the
North Sea flood of 1953.

▶ The flood defenses were built for a failure of 1 in 10,000 years.

What can we say about the 10,000-year flood based on 100 years of data?
This is when Extreme Statistics is used...
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Order Statistics: Motivation

What are extremes?

Extremes are those in the shaded region. Source: Zhang et al. (2011)

▶ Events near the tails, such as extreme rainfall, are given very small probability of
occurrence such that the distribution might imply they would never happen.
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Order Statistics: Preliminaries

Consider the following experiment:

1 Simulate sample values for random variables Y1,Y2, . . . ,Y50 which are independent
and identically distributed uniform RVs on [0, 1].

2 Record or collect the smallest number generated.

3 Repeat 1000x.

The smallest number for each simulation is shown as a red dot.
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Order Statistics: Preliminaries
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Order Statistics: Preliminaries

Consider this 2nd experiment:

1 Simulate sample values for random variables Y1,Y2, . . . ,Y50 which are independent
and identically distributed uniform RVs on [0, 1].

2 Record or collect the largest number generated.

3 Repeat 1000x.

The largest number for each simulation is shown as a blue dot.
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Order Statistics: Preliminaries
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The Distribution of the Maximum
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The Distribution of the Maximum Y(n)

Let Y1,Y2, . . . ,Yn be independent and identically distributed continuous RVs with PDF
f (y) and CDF F (y). Deriving the CDF of the maximum RV Y(n), we have

FY(n)
(y) = P(Y(n) ≤ y) def’n of CDF

= P(Y1 ≤ y ,Y2 ≤ y , . . . ,Yn ≤ y)

the prob. that the maximum RV Y(n) will be less than or equal to y is equal to the

prob. all the RVs are less than or equal to y .

= P(Y1 ≤ y)P(Y2 ≤ y) · · ·P(Yn ≤ y) independence

= {P(Y1 ≤ y)}n identically distributed

= {F (y)}n. def’n of CDF
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The Distribution of the Maximum Y(n)

Deriving the PDF of the maximum RV Y(n), we have

fY(n)
(y) =

d

dy
{FY(n)

(y)} def’n of PDF

=
d

dy
[{F (y)}n] derived CDF from previous slide

= n{F (y)}n−1f (y). derivative of CDF F (y) is PDF f (y); chain rule
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The Distribution of the Maximum Y(n)

Example 1: (Maximum of Uniforms)

Recall the 2nd experiment...
▶ Given: Y1,Y2, . . . ,Y50 which are

independent and identically distributed
uniform RVs on [0, 1].

▶ f (y) = 1, since Y1,Y2, . . . ,Y50 ∼ U(0, 1)
▶ F (y) = y , y ∈ [0, 1] CDF of U(0, 1)

▶ n = 50

fY(50)
(y) = n{F (y)}n−1f (y) formula

= 50y 50−1(1)

= 50y 49, y ∈ [0, 1].

This is a Beta(50, 1) distribution.

Recall PDF of Beta: f (y) =

{
1

B(α,β)
yα−1(1 − y)β−1, 0 ≤ y ≤ 1,

0, elsewhere,
where B(α, β) =

Γ(α)Γ(β)
Γ(α+β)
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The Distribution of the Maximum Y(n)

Example 2: (Maximum of Exponentials)

Let X1,X2, . . . ,Xn
iid∼ Exp(β). Find the PDF of X(n).

Solution:

▶ CDF of exponential: F (x) =

{
0, x < 0

1− e−x/β , 0 ≤ x < ∞

▶ PDF of exponential: f (x) =

{
1
β
e−x/β , 0 ≤ x < ∞,

0, elsewhere

▶ Use the formula of PDF of Maximum:

fX(n)
(x) = n{F (x)}n−1f (x) formula

= n(1− e−x/β)n−1 1

β
e−x/β .
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The Distribution of the Minimum
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The Distribution of the Minimum Y(1)

Let Y1,Y2, . . . ,Yn be independent and identically distributed continuous RVs with PDF
f (y) and CDF F (y). Deriving the CDF of the minimum RV Y(1), we have

FY(1)
(y) = P(Y(1) ≤ y) def’n of CDF

= 1− P(Y(1) > y) complement

= 1− P(Y1 > y ,Y2 > y , . . . ,Yn > y)

the prob. that the minimum RV Y(n) will be greater than y is equal to the

prob. all the RVs are greater than y .

= 1− P(Y1 > y)P(Y2 > y) · · ·P(Yn > y) independence

= 1− {P(Y1 > y)}n identically distributed

= 1− {1− P(Y1 ≤ y)}n complement

= 1− {1− F (y)}n. def’n of CDF
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The Distribution of the Minimum Y(1)

Deriving the PDF of the minimum RV Y(1), we have

fY(1)
(y) =

d

dy
{FY(1)

(y)} def’n of PDF

=
d

dy
[1− {1− F (y)}n] derived CDF from previous slide

= n{1− F (y)}n−1f (y). derivative of CDF F (y) is PDF f (y); chain rule
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The Distribution of the Minimum Y(1)

Example 3: (Minimum of Uniforms)

Recall the 1st experiment...
▶ Given: Y1,Y2, . . . ,Y50 which are

independent and identically distributed
uniform RVs on [0, 1].

▶ f (y) = 1, since Y1,Y2, . . . ,Y50 ∼ U(0, 1)
▶ F (y) = y , y ∈ [0, 1] CDF of U(0, 1)

▶ n = 50

fY(1)
(y) = n{1− F (y)}n−1f (y) formula

= 50(1− y)50−1(1)

= 50(1− y)49, y ∈ [0, 1].

This is a Beta(1, 50) distribution.

Recall PDF of Beta: f (y) =

{
1

B(α,β)
yα−1(1 − y)β−1, 0 ≤ y ≤ 1,

0, elsewhere,
where B(α, β) =

Γ(α)Γ(β)
Γ(α+β)
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The Distribution of the Minimum Y(1)

Example 4: (Minimum of Exponentials)

Let X1,X2, . . . ,Xn
iid∼ Exp(β). Find the PDF of X(1).

Solution:

▶ CDF of exponential: F (x) =

{
0, x < 0

1− e−x/β , 0 ≤ x < ∞

▶ PDF of exponential: f (x) =

{
1
β
e−x/β , 0 ≤ x < ∞,

0, elsewhere

▶ Use the formula of PDF of Minimum:

fX(1)
(y) = n{1− F (x)}n−1f (x) formula

= n{1− (1− e−x/β)}n−1 1

β
e−x/β

=
n

β
e−x/β(e−x/β)n−1

=
n

β
e−nx/β .
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The Joint Distribution of the Minimum and Maximum
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The Joint Distribution of the Minimum and Maximum

Goal: Derive the joint CDF of the minimum Y(1) and maximum Y(n):

FY(1),Y(n)
(r , s) = P(Y(1) ≤ r ,Y(n) ≤ s).

How do we solve for P(Y(1) ≤ r ,Y(n) ≤ s)?

⇒ P(Y(1) ≤ r ,Y(n) ≤ s) = FY(n)
(s)− P(Y(1) > r ,Y(n) ≤ s).

(cont’d next slide...)
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The Joint Distribution of the Minimum and Maximum

P(Y(1) ≤ r ,Y(n) ≤ s) = FY(n)
(s)− P(Y(1) > r ,Y(n) ≤ s)

▶ FY(n)
(s): we know the formula for CDF of maximum:

FY(n)
(s) = {F (s)}n Slide 20

▶ P(Y(1) > r ,Y(n) ≤ s):
▶ If r ≥ s:

P(Y(1) > r ,Y(n) ≤ s) = 0.

This is the uninteresting case since P(Y(1) ≤ r ,Y(n) ≤ s) = FY(n)
(s).

(cont’d next slide...)
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The Joint Distribution of the Minimum and Maximum

▶ P(Y(1) > r ,Y(n) ≤ s):
▶ If r < s,

P(Y(1) > r ,Y(n) ≤ s) = P(r < Y1 ≤ s, r < Y2 ≤ s, . . . , r < Yn ≤ s)

= P(r < Y1 ≤ s)P(r < Y2 ≤ s) · · ·P(r < Yn ≤ s)

independent RVs

= {P(r < Y1 ≤ s)}n identical RVs

= {F (s)− F (r)}n. def’n of CDF

(cont’d next slide...)
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The Joint Distribution of the Minimum and Maximum

▶ Putting everything together, the joint CDF of Y(1) and Y(n) is:

FY(1),Y(n)
(r , s) = P(Y(1) ≤ r ,Y(n) ≤ s)

= FY(n)
(s)− P(Y(1) > r ,Y(n) ≤ s)

= {F (s)}n − {F (s)− F (r)}n. from Slides 31-32

▶ Consequently, the joint PDF of Y(1) and Y(n) is:

fY(1),Y(n)
(r , s) =

d

dr

d

ds
[{F (s)}n − {F (s)− F (r)}n]

=
d

dr

[
n{F (s)}n−1f (s)− n{F (s)− F (r)}n−1f (s)

]
= −n(n − 1){F (s)− F (r)}n−2f (s){−f (r)}
= n(n − 1){F (s)− F (r)}n−2f (s)f (r), r < s.
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The Joint Distribution of the Minimum and Maximum

Example 5:

Let X1,X2, . . . ,X15
iid∼ U(0, 1). Find the joint PDF of X(1) and X(15).

Solution:

▶ CDF of U(0, 1): F (x) = x , 0 ≤ x ≤ 1

▶ PDF of U(0, 1): f (x) = 1, 0 ≤ x ≤ 1

▶ n = 15

▶ Use the formula of joint PDF of Minimum and Maximum:

fX(1),X(15)
(r , s) = n(n − 1){F (s)− F (r)}n−2f (s)f (r) formula

= 15(15− 1)(s − r)15−2(1)(1)

= 15(14)(s − r)13, 0 ≤ r ≤ 1, 0 ≤ s ≤ 1.
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The Distribution of the kth Order Statistic
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The Distribution of the kth Order Statistic: Preliminaries

Let Y be a continuous RV.

f (y) = lim
ϵ→0

P(Y ∈ [y , y + ϵ])

ϵ
P(Y ∈ [y , y + ϵ]) ≈ f (y)ϵ probability = area under the curve
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The Distribution of the kth Order Statistic

Let Y1,Y2, . . . ,Yn be iid continuous RVs with PDF f (y) and F (y).

P(y ≤ Y(k) ≤ y + ϵ) = P(one of the Y’s ∈ [y , y + ϵ] and exactly k − 1 of them < y)

=
n∑

i=1

P(Yi ∈ [y , y + ϵ] and exactly k − 1 of them are < y)

= nP(Y1 ∈ [y , y + ϵ] and exactly k − 1 of them are < y)

Yi ’s have identical distributions

= nP(Y1 ∈ [y , y + ϵ])P(exactly k − 1 of them are < y)

Yi ’s are independent

= nP(Y1 ∈ [y , y + ϵ])

{(
n − 1
k − 1

)
P(Y1 < y)k−1P(Y1 ≥ y)n−k

}
binomial probability with n − 1 trials and prob. of success P(Y1 < y)

= nP(Y1 ∈ [y , y + ϵ])

(
n − 1
k − 1

)
F (y)k−1(1− F (y))n−k

(cont’d next slide...)
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The Distribution of the kth Order Statistic

P(y ≤ Y(k) ≤ y + ϵ) = nP(Y1 ∈ [y , y + ϵ])

(
n − 1
k − 1

)
F (y)k−1(1− F (y))n−k

fY(k)
(y)ϵ = nf (y)ϵ

(
n − 1
k − 1

)
F (y)k−1(1− F (y))n−k

def’n of PDF Slide 36

fY(k)
(y) = nf (y)

(
n − 1
k − 1

)
F (y)k−1(1− F (y))n−k . cancel ϵ on both sides
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The Distribution of the kth Order Statistic

Example 6:

Let X1,X2, . . . ,X15
iid∼ U(0, 1). Find the PDF of X(8).

Solution:
▶ CDF of U(0, 1): F (x) = x , 0 ≤ x ≤ 1

▶ PDF of U(0, 1): f (x) = 1, 0 ≤ x ≤ 1

▶ n = 15

▶ k = 8

▶ Use the formula for the PDF of the kth order statistic:

fX(8)
(x) = nf (x)

(
n − 1
k − 1

)
F (x)k−1(1− F (x))n−k

formula

= 15(1)

(
15− 1
8− 1

)
x8−1(1− x)15−8

= 15

(
14
7

)
x7(1− x)7 = 15

14!

(14− 7)!7!
x7(1− x)7

=
15!

7!7!
x7(1− x)7, 0 ≤ x ≤ 1.
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Questions?
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Homework Exercises: 6.72, 6.73, 6.74, 6.75, 6.80
Solutions will be discussed this Friday by the TA.
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