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Random Variables

▶ Random Variable: is a function that maps outcomes into real
numbers. Example: Three fair coins are flipped. Let the random variable X be

the number of heads obtained.

▶ Discrete random variables: random variables whose values take only a
finite or countably infinite number of possible values.

▶ Continuous random variables: are random variables that can take on
an infinite number of possible values.
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Probability Distribution of Discrete Random Variables

▶ Some notations:
▶ random variables: uppercase letter.

Example: Let Y be the absolute difference

between the number of heads and the number

of tails.
▶ particular value of the random variable

(result): lowercase letter.
Example: y = 3, y = 1.

▶ Goal: Compute P(Y = y).
Read as: Probability that the (random variable) Y

takes on the value y.

Definition 3.2

The probability that Y takes on the value y , denoted P(Y = y), is defined
as the sum of the probabilities of all sample points in S that are assigned
the value y .

Note: P(Y = y) is also often written as p(y), which is read as “p of y”.
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Probability Distribution of Discrete Random Variables

Definition 3.3

The probability distribution for a discrete variable Y can be represented by
a formula, a table, or a graph that provides p(y) = P(Y = y) for all y .

▶ Example:

▶ Table of the
probability
distribution:

x p(x)

0 1/8

1 3/8

2 3/8

3 1/8

▶ Histogram of the
probability
distribution:
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Probability Distribution of Discrete Random Variables

A basketball player takes 4 independent free throws with a probability of
0.7 of getting a basket on each shot. Let Y = the number of baskets he
gets. Write out the full probability distribution for Y .

Answer:

y p(y)

0 C 4
0 (1− 0.7)(1− 0.7)(1− 0.7)(1− 0.7) = 0.0081

1 C 4
1 (0.7)(1− 0.7)(1− 0.7)(1− 0.7) = 0.0756

2 C 4
2 (0.7)(0.7)(1− 0.7)(1− 0.7) = 0.2646

3 C 4
3 (0.7)(0.7)(0.7)(1− 0.7) = 0.4116

4 C 4
4 (0.7)(0.7)(0.7)(0.7) = 0.2401

Note: y = 1 corresponds to the following event:
{FTmade

1 ,FTmiss
2 ,FTmiss

3 ,FTmiss
4 } ∪ {FTmiss

1 ,FTmade
2 ,FTmiss

3 ,FTmiss
4 } ∪

{FTmiss
1 ,FTmiss

2 ,FTmade
3 ,FTmiss

4 } ∪ {FTmiss
1 ,FTmiss

2 ,FTmiss
3 ,FTmade

4 }.
This is why we need to multiply C 4

1 since there are C 4
1 ways to choose which free throw

to make.
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Expected Value of Discrete Random Variables
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Expected Value of Discrete Random Variables

Definition 3.4: Expected Value

Let Y be a discrete random variable with the probability function p(y).
Then the expected value of Y , denoted E (Y ), is defined to be

E (Y ) =
∑
y

yp(y).

Remarks:

▶ Expected value of Y ⇔ Expectation of Y

▶ The expected value of Y is also very often called the mean of Y and is denoted by
µY or µ.

▶ The expected value, or mean, of Y gives a single value that acts as a
representative or average of the values of Y , and for this reason it is often called a
measure of central tendency.

▶ Expected value can be seen as an average of the values that the random variable
Y can take but weighted by their corresponding probabilities.

▶ The expected value gives an idea of the average value attained by the random
variable Y when the experiment is repeated many times.
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Expected Value of Discrete Random Variables

Applications:

▶ to determine which of the outcomes is most likely to happen

▶ to determine the average payoff or loss in a game of chance

▶ to determine premiums on insurance policies

Remarks: You can think of the expected value as the number that is representative of

the values that the random variable can take...
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Expected Value of Discrete Random Variables

Example:
What is the expected value of random variable X if its probability
distribution is the following:

x p(x)

0 1/5

1 1/5

2 1/5

3 1/5

4 1/5
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Expected Value of Discrete Random Variables

Strategy: Use the formula for computing expected value: E(X ) =
∑

x xp(x).

Example:
What is the expected value of random variable X if its probability
distribution is the following:

x p(x) xp(x)

0 1/5 0× 1/5 = 0

1 1/5 1× 1/5 = 1/5

2 1/5 2× 1/5 = 2/5

3 1/5 3× 1/5 = 3/5

4 1/5 4× 1/5 = 4/5

Answer:

E (X ) =
∑
x

xp(x) = 0 + 1/5 + 2/5 + 3/5 + 4/5 = 2.

Note that we can arrive at the same answer by simply computing the average of the x

values: 0+1+2+3+4
5

= 10
5
= 2.
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Expected Value of Discrete Random Variables

Example:
A men’s soccer team plays soccer zero, one, or two days a week. The
probability that they play zero days is 0.2, the probability that they play
one day is 0.5, and the probability that they play two days is 0.3. Find the
expected value of the number of days per week the men’s soccer team
plays soccer.

Answer: Let X be the number of days the men’s soccer team plays soccer per week.

x p(x) xp(x)

0 0.2 0× 0.2 = 0

1 0.5 1× 0.5 = 0.5

2 0.3 2× 0.3 = 0.6

E(X ) =
∑
x

xp(x) = 0+0.5+0.6 = 1.1.

The men’s soccer team would, on the
average, expect to play soccer 1.1 days
per week.
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Expected Value of Discrete Random Variables

Example:
Your company plans to invest in a particular project. There is a 35%
chance that you will lose $30,000, a 40% chance that you will break even,
and a 25% chance that you will make $55,000. Based solely on this
information, what should you do?

Answer: Let X be the return on investment of the project.

x p(x) xp(x)

-30,000 0.35 −30, 000× 0.35 = −10, 500

0 0.40 0× 0.40 = 0

55,000 0.25 55, 000× 0.25 = 13, 750

E(X ) =
∑
x

xp(x) = −10, 500+0+13, 750 = 3, 250.

The expected value of the return on in-
vestment is 3,250. Since the return is
positive, you should proceed with the
project.
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Expected Value of Discrete Random Variables

Example: Computing Auto Insurance Premiums
An automobile insurance company has determined the probabilities for
various claim amounts for drivers ages 16 through 21 as shown in the
table. Calculate the expected value and describe what this means in
practical terms.

Amount of Claim Probability

$0 0.70

$2,000 0.15

$4,000 0.08

$6,000 0.05

$8,000 0.01

$10,000 0.01
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Expected Value of Discrete Random Variables

Example: Computing Auto Insurance Premiums
An automobile insurance company has determined the probabilities for various claim

amounts for drivers ages 16 through 21 as shown in the table. Calculate the expected

value and describe what this means in practical terms.

Amount of Claim
x

Probability
p(x)

xp(x)

$0 0.70 0× 0.70 = 0

$2,000 0.15 2,000×0.15 = 300

$4,000 0.08 4,000×0.08 = 320

$6,000 0.05 6,000×0.05 = 300

$8,000 0.01 8,000×0.01 = 80

$10,000 0.01 10,000×0.01 = 100

Answer: Let X be the insurance claim.

E(X ) =
∑
x

xp(x) = 0 + 300 + 320 + 300 + 80 + 100 = 1, 100.

This means that in the long run, the insurance company can expect to pay each

customer $1,100. The company needs to charge its customers at least $1,100 to break

even.
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Expected Value of Discrete Random Variables

Example: Computing Life Insurance Premiums
A 40-year-old man in the U.S. has a 0.242% risk of dying during the next
year. An insurance company charges $275 for a life-insurance policy that
pays a $100,000 death benefit. What is the expected value for the person
buying the insurance?
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Expected Value of Discrete Random Variables

Example: Computing Life Insurance Premiums
A 40-year-old man in the U.S. has a 0.242% risk of dying during the next
year. An insurance company charges $275 for a life-insurance policy that
pays a $100,000 death benefit. What is the expected value for the person
buying the insurance?

Answer: Let X be the insurance payoff to the customer.

Payoff
x

Probability
p(x)

xp(x)

$100,000 - $275 = $99,725 0.00242 $99,725×0.00242 = $241.33

−$275 (1 - 0.00242) = 0.99758 −$275× 0.99758 = −$274.33

E(X ) =
∑
x

xp(x) = $241.33− $274.33 = −$33.
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Expected Value of Discrete Random Variables

Example:
A frog starts on a 1-dimensional number line at 0. At each second, independently, the
frog takes a unit step right with probability p1, to the left with probability p2, and does
not move with probability p3, where p1 + p2 + p3 = 1. After 2 seconds, let X be the
location of the frog. What is the probability distribution and expectation of X?
Answer: Let L be the event of left step, R of right step, and N of no step.

Event x p(x)

LL -2 p2
2

NL ∪ LN -1 2p2p3
NN ∪ LR ∪ RL 0 p2

3 + 2p1p2
NR ∪ RN 1 2p1p3

RR 2 p2
1

Check that the probabilities sum to 1 for the table above to be a valid probability
distribution: p2

2 + 2p2p3 + p2
3 + 2p1p2 + 2p1p3 + p2

1 = (p1 + p2 + p3)
2 = 12 = 1 since we

know from the given that p1 + p2 + p3 = 1.

µ = E(X ) =
∑

x xp(x) = −2p2
2 − 2p2p3 + 0(p2

3 + 2p1p2) + 2p1p3 + 2p2
1 = 2(p2

1 − p2
2).
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Expected Value of Discrete Random Variables

Theorem 3.2: Expected Value of Functions of Random Variables

Let Y be a discrete random variable with probability function p(y) and
g(Y ) be a real-valued function of Y . Then the expected value of g(Y ),
denoted E{g(Y )}, is given by

E{g(Y )} =
∑
y

g(y)p(y).

Mary Lai Salvaña, Ph.D. UConn STAT 3375Q Introduction to Mathematical Statistics I Lec 5 20 / 41



Expected Value of Discrete Random Variables

Example:
X is a random variable with the following probability distribution:

x p(x)

-3 1/6

6 1/2

9 1/3

Suppose that g(X ) = X 2 + 2, find E{g(X )}.
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Expected Value of Discrete Random Variables

Strategy: Use the formula for computing expected value: E{g(X )} =
∑

x g(x)p(x).

Example:
X is a random variable with the following probability distribution:

x p(x) g(x) g(x)p(x)

-3 1/6 (−3)2 + 2 = 11 11/6

6 1/2 62 + 2 = 38 38/2

9 1/3 92 + 2 = 83 83/3

Suppose that g(X ) = X 2 + 2, find E{g(X )}.

Answer:

E{g(X )} =
∑
x

g(x)p(x) = 11/6 + 38/2 + 83/3 = 48.5.
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Expected Value of Discrete Random Variables

Theorem 3.3: Expected Value of a Constant

Let Y be a discrete random variable with probability function p(y) and c
be a constant. Then E (c) = c .

Proof of Theorem 3.3:
Suppose g(Y ) = c . By Theorem 3.2, we know that

E{g(Y )} =
∑
y

g(y)p(y)

E (c) =
∑
y

cp(y)

= c
∑
y

p(y)

= c(1) since
∑
y

p(y) = 1 (Theorem 3.1)

= c .
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Expected Value of Discrete Random Variables

Theorem 3.4: Expected Value of a Scaled Random Variable

Let Y be a discrete random variable with probability function p(y), g(Y )
be a function of Y , and c be a constant. Then

E{cg(Y )} = cE{g(Y )}

Proof of Theorem 3.4:
By Theorem 3.2, we know that

E{g(Y )} =
∑
y

g(y)p(y)

E{cg(Y )} =
∑
y

cg(y)p(y)

= c
∑
y

g(y)p(y)

= cE{g(Y )}. definition of expected value
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Expected Value of Discrete Random Variables

Theorem 3.5: Expected Value of a Sum of Random Variables

Let Y be a discrete random variable with probability function p(y),
g1(Y ), g2(Y ), . . . , gk(Y ) be k functions of Y . Then

E{g1(Y )+g2(Y )+. . .+gk(Y )} = E{g1(Y )}+E{g2(Y )}+. . .+E{gk(Y )}.

Proof of Theorem 3.5:
Suppose k = 2. By Theorem 3.2, we know that

E{g(Y )} =
∑
y

g(y)p(y)

E{g1(Y ) + g2(Y )} =
∑
y

{g1(y) + g2(y)}p(y)

=
∑
y

g1(y)p(y) +
∑
y

g2(y)p(y)

= E{g1(Y )}+ E{g2(Y )}. definition of expected value
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Variance of Discrete Random Variables
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Variance of Discrete Random Variables

Definition 3.5: Variance

If Y is a random variable with mean E (Y ) = µ, the variance of a random
variable Y , denoted V (Y ) or σ2, is defined to be the expected value of
(Y − µ)2. That is,

V (Y ) = E{(Y − µ)2}.

The standard deviation of Y , denoted SD(Y ) or sd(Y ) or σ, is the
positive square root of V (Y ).

Remarks:

▶ Variance is a measure of the dispersion, or scatter, of the values of the random
variable about the mean µ.

▶ If the values tend to be concentrated near the mean, the variance is small.

▶ If the values tend to be far from the mean, the variance is large.

▶ In finance, standard deviation is also often termed as volatility.

▶ Variance is also commonly used to measure uncertainty of the outcome or
prediction.
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Variance of Discrete Random Variables

Arrange the figures based on their variance, from smallest to largest.
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Figure: A
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Figure: C
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Variance of Discrete Random Variables

Arrange the figures based on their variance, from smallest to largest.
Answer:
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Figure: B
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Figure: C
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Variance: Application

Source: https://bookdown.org/compfinezbook/introcompfinr/Univariate-Descriptive-Statistic.html
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Variance: Application

Source: https://analystprep.com/cfa-level-1-exam/portfolio-management/minimum-variance-portfolios/
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Variance: Application

Source: https://freakonometrics.hypotheses.org/tag/temperature
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Variance: Application

Source: Salvaña, M. L. O. & Jun, M. (2022) 3D bivariate spatial modelling of Argo ocean temperature and salinity profiles. In

preparation. https://arxiv.org/pdf/2210.11611.pdf.
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Variance: Application
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Variance: Application
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Variance of Discrete Random Variables

Theorem 3.6: Variance

Let Y be a discrete random variable with probability function p(y) and
mean E (Y ) = µ. Then the

V (Y ) = σ2 = E{(Y − µ)2} = E (Y 2)− µ2.

Proof of Theorem 3.6:

V (Y ) = σ2 = E{(Y − µ)2} definition of variance

= E{Y 2 − 2µY + µ2} squaring

= E(Y 2)− E(2µY ) + E(µ2) expected value of sums (Thm. 3.5)

= E(Y 2)− E(2µY ) + µ2 expected value of constant is itself

= E(Y 2)− 2µE(Y ) + µ2 expected value of scaled random variables

= E(Y 2)− 2µ(µ) + µ2 E(Y ) = µ

= E(Y 2)− 2µ2 + µ2

= E(Y 2)− µ2.
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Variance of Discrete Random Variables

Example:
What is the variance and the standard deviation of random variable X if
its probability distribution is the following:

x p(x)

0 1/5

1 1/5

2 1/5

3 1/5

4 1/5
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Variance of Discrete Random Variables

Strategy: Use the formula for computing variance: V (X ) = E{(X − µ)2} = E(X 2)− µ2.

Example:
What is the variance and the standard deviation of random variable X if
its probability distribution is the following:

x p(x) x2p(x)

0 1/5 02 × 1/5 = 0

1 1/5 12 × 1/5 = 1/5

2 1/5 22 × 1/5 = 4/5

3 1/5 32 × 1/5 = 9/5

4 1/5 42 × 1/5 = 16/5

Answer:

V (X ) =
∑
x

x2p(x)− µ2 = (0 + 1/5 + 4/5 + 9/5 + 16/5)− 22 = 6− 4 = 2.

σ =
√

V (X ) =
√
2.
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Variance of Discrete Random Variables

Example:
I roll a fair die and let X be the resulting number. Find E(X ), V (X ), and σ.
Answer:

x p(x)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

µ = E(X ) =
∑

x xp(x) = 1
(
1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)
= 21

6
= 7

2
.

σ2 = V (X ) =
∑

x x
2p(x)− µ2

=
{
12

(
1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)}
−

(
7
2

)2
= 91

6
− 49

4
= 35

12
.

σ =
√

V (X ) =
√

35
12
.
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Questions?
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Homework Exercises: 3.7, 3.19, 3.27, 3.31, 3.33
Solutions will be discussed this Friday by the TA.
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