

Department of Statistics College of Liberal Arts & Sciences

Exam Date: 3 April 2024

STAT 3375Q: Introduction to Mathematical Statistics I Spring 2024

Midterm 2 Simulation

INSTRUCTIONS:

- There are 7 problems in this exam. Pick ONLY 5 problems to answer. Indicate your 5 chosen problems by circling the numbers on the table below. Answering more than 5 problems will NOT merit additional points.
- You are allowed ONE formula sheet which you will SUBMIT along with this exam sheet. Put all other items away such as books, notes, phones, laptops, and other electronic devices.
- You have 75 minutes to complete the exam. Time remaining will be flashed on the screen and will be updated every 10 minutes.
- A calculator is not necessary. You can keep your final answers as fractions in the simplest form.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- To merit partial points, make sure to justify/explain your thoughts and solutions, using notations and terminologies properly, and clearly defining any events, random variables, parameters, and distributions that you used.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported
 by calculations, explanations, or algebraic work will receive no credit; an incorrect answer
 supported by substantially correct calculations and explanations might still receive partial
 credit.

Problem	Allocated Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
Total	100	

Problem 1

Suppose X and Y are independent standard normal random variables. That is, $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$.

- a) Find Cov(X, Y). (4 points)
- b) Find $E(X^2Y^2)$. (4 points)
- c) Find E(3X 4Y). (4 points)
- d) Find V(3X 4Y). (4 points)
- e) Find $P(-3 \le 3X 4Y \le 5)$. (4 points)

Problem 2

Consider a random variable Y with the PDF

$$f(y) = \frac{|y|}{5}, \quad -1 < y < 3.$$

Find E(Y). (20 points)

Problem 3

Suppose that the completion time in hours T for the STAT 3375Q final exam follows a distribution with density

$$f(t) = \frac{2}{27}(t^2 + t), \quad 0 \le t \le 3.$$

What is the probability that a randomly chosen student finishes the exam during the second hour of the exam. (20 points)

Problem 4

Given that X has MGF

$$m(t) = \frac{1}{6}e^{-2t} + \frac{1}{3}e^{-t} + \frac{1}{4}e^{t} + \frac{1}{4}e^{2t},$$

find $P(|X| \le 1)$. (20 points)

Problem 5

Suppose X and Y are continuous random variables with joint PDF

$$f(x,y) = \begin{cases} 15x^2y, & \text{if } 0 \le x \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- a) Find the marginal PDF of X, f(x). (5 points)
- b) Find the conditional PDF of Y given X, f(y|x). (5 points)
- c) Find $P(Y \le 1/2|X = 1/4)$. (5 points)
- d) Find E(Y|X=x). (5 points)

Problem 6

Let X be a random variable with MGF

$$m(t) = \left(1 - \frac{t}{2}\right)^{-2}, \quad |t| < 2.$$

- a) Find E(X). (7 points)
- b) Find $E(X^2)$. (7 points)
- c) Find V(X). (6 points)

Problem 7

Let X and Y be random variables such that

$$E(X) = 1$$
, $V(X) = 1$, $E(Y) = 2$, $V(Y) = 2$, $Cov(X, Y) = 1$.

- a) Find E(X + 2Y). (5 points)
- b) Find E(XY). (5 points)
- c) Find V(X-2Y+1). (5 points)
- d) Find Corr(X, Y). (5 points)