

# STAT 3375Q: Introduction to Mathematical Statistics I

Spring 2024

### Quiz 2 Review Exercises

Quiz Date: 7 February, 2024

### Problem 1

Prove that for a random variable X with expected value  $E(X) = \lambda$ ,

$$V(X) = E\{X(X-1)\} + \lambda - \lambda^2.$$

Solution:

Approach 1.

$$V(X) = E\{(X - \lambda)^{2}\} = E(X^{2} - 2\lambda X + \lambda^{2}) = E(X^{2} - X + X) - 2\lambda E(X) + \lambda^{2} = E(X^{2} - X) + E(X) - 2\lambda^{2} + \lambda^{2} = E(X^{2} - X) + E(X) - 2\lambda^{2} + \lambda^{2} = E\{X(X - 1)\} + \lambda - \lambda^{2}$$

Approach 2.

$$V(X) = E(X^2) - \lambda^2$$
  
=  $E(X^2) - \lambda + \lambda - \lambda^2$   
=  $E(X^2 - X) + \lambda - \lambda^2$   
=  $E\{X(X - 1)\} + \lambda - \lambda^2$ 

### Problem 2

A manufacturer is sending 10 boxes out for shipment today. Unfortunately, some of the boxes have defective items.

| Box #                | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----------------------|---|---|---|---|---|---|---|---|---|----|
| # of defective items | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 1 | 3  |

- a) One of these boxes is to be selected at random for shipment to a particular customer. Let X be the number of defective items in the selected box. What is the probability distribution of X?
- b) What is the expected value of defective items?
- c) Another manufacturer is known to have  $X^2$  defective items in each of the boxes numbered 1 to 10. If this manufacturer sends out a randomly selected box, what is the expected number of defective items the customer will receive?

Solution:

- b)  $E(X) = 0\left(\frac{5}{10}\right) + 1\left(\frac{2}{10}\right) + 2\left(\frac{2}{10}\right) + 3\left(\frac{1}{10}\right) = 0.9.$  (3 pts)
- c)  $E(X^2) = 0^2 \left(\frac{5}{10}\right) + 1^2 \left(\frac{2}{10}\right) + 2^2 \left(\frac{2}{10}\right) + 3^2 \left(\frac{1}{10}\right) = 1.9.$  (3 pts)

# Problem 3

Suppose the random variable X takes on possible values x = 0, 1, 2 and has a probability mass function  $f(x) = \frac{2x+3}{k}$ , determine the value of k.

Solution:

| x | p(x) |
|---|------|
| 0 | 3/k  |
| 1 | 5/k  |
| 2 | 7/k  |
|   |      |

 $\frac{3}{k} + \frac{5}{k} + \frac{7}{k} = 1 \Rightarrow k = 15.$ 

#### Problem 4

A box contains 5 red and 5 blue marbles. Two marbles are drawn randomly. If they are the same color, then you win \$1.10. If they are different colors, you lose \$1.00. Compute

- a) the expected value of the amount you win
- b) the variance of the amount you win

#### Solution:

Let X be a random variable for the amount you win. Let R be the event that a red marble is drawn and B be the event that a blue marble is drawn.

| Event         | x   | p(x)                                                                                                                  |
|---------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| BB            | 1.1 | $\left(\frac{5}{10}\right)\left(\frac{4}{9}\right) = \frac{2}{9} \text{ or } C_2^5/C_2^{10} = \frac{2}{9}$            |
| $RB \cup BR$  | -1  | $\left(\frac{5}{10}\right)\left(\frac{5}{9}\right) + \left(\frac{5}{10}\right)\left(\frac{5}{9}\right) = \frac{5}{9}$ |
| $\mathbf{RR}$ | 1.1 | $\left(\frac{5}{10}\right)\left(\frac{4}{9}\right) = \frac{2}{9} \text{ or } C_2^5/C_2^{10} = \frac{2}{9}$            |

- a) E(X) = 1.1(2/9) + 1.1(2/9) 1(5/9) = -0.6/9 = -0.067.
- b)  $E(X^2) = 1.1^2(2/9) + 1.1^2(2/9) + (-1)^2(5/9) = 9.84/9 = 1.093$  $V(X) = E(X^2) - \{E(X)\}^2 = 1.093 - (-0.067)^2 = 1.089.$

**Problem 5** If E(X) = 1 and V(X) = 5, find a.  $E\{(2 + X)^2\}$ b. V(4 + 3X)

Solution:

- a.  $E\{(2+X)^2\} = E(4+4X+X^2) = 4+4E(X) + E(X^2) = 4+4+E(X^2) = 8+E(X^2).$ To solve for  $E(X^2)$ , we know  $V(X) = E(X^2) - \{E(X)\}^2 \Rightarrow 5 = E(X^2) - 1^2 \Rightarrow E(X^2) = 6.$ Thus,  $E\{(2+X)^2\} = 8+6 = 14.$
- b.  $V(4+3X) = 3^2 V(X) = 45.$