Solutions for Week12 Discussion Session

6.15

Let U have a uniform distribution on (0, 1). The distribution function for U is $F_U(u) = P(U < u) = u; 0 \le u \le 1$. For a function G, we require $G(U) = Y$ where Y has distribution function $F_Y(y) = 1 - e^{-y^2}$; $y \ge 0$. Note that, $F_Y(y) = P(Y \le y) = P(G(U) \le y) = P(U \le G^{-1}(y)) = F(G^{-1}(y)) = u.$ So it must be true that $G^{-1}(y) = 1 - e^{-y^2} = u$ Hence, $G(u) = [-ln(1-u)]^{-1/2}$

Therefore, the random variable Y = $[-\ln(1-U)]-1/2$ has distribution function $F_Y(y)$.

6.20

Y follows uniform (0,1). (a) We have to find the distribution of $W = Y^2$. We will use the CDF method. (a) we have to find the distribution of $W = I$. We will $F_W(w) = P(W \le w) = P(Y^2 < w) = P(Y < \sqrt{w}) = \sqrt{w}$. And the range for w is: $0 < y < 1 \implies 0 < y^2 < 1 \implies 0 < w < 1$.

(b) We have to find the distribution of $W =$ √ stribution of $W = \sqrt{Y}$. We will use the CDF method. $F_W(w) = P(W \le w) = P(\sqrt{Y} < w) = P(Y < w^2) = w^2$ And the range for w is: $0 < y < 1 \implies 0 < \sqrt{y} < 1 \implies 0 < w < 1$.

6.23

Given, Y has pdf $f(y) = 2(1 - y); 0 \le y \le 1$

(a) We have to find the distribution of $U_1 = 2Y - 1$. We will use the Jacobian method to find the distribution of U_1 . $U_1 = 2Y - 1 \implies Y = \frac{U_1 + 1}{2}$ Take the first derivative of Y with respect to U_1 ; $dy/du_1 = 1/2$. Hence, the Jacobian; $|J| = |dy/du_1| = 1/2$. $f(u_1) = |J|f_{u_1}(y) = \frac{1}{2}2(1 - \frac{U_1+1}{2}) = \frac{1-u_1}{2}$
Now, for the range of u_1 , we have $0 \le y \le 1 \implies 0 \le 2y \le 2 \implies -1 \le 2y - 1 \le 1 \implies -1 \le u_1 \le 1$. Hence, $f(u_1) = \frac{1-u_1}{2}; -1 \le u_1 \le 1.$

(b) We have to find the distribution of $U_2 = 1-2Y$. We will use the Jacobian method to find the distribution of U_2 . $U_2 = 1 - 2Y \implies Y = \frac{1 - U_2}{2}$ Take the first derivative of Y with respect to U_2 ; $dy/du_2 = -1/2$. Hence, the Jacobian; $|J| = |dy/du_2| = 1/2$. $f(u_2) = |J|f_{u_2}(y) = \frac{1}{2}2(1 - \frac{1-U_2}{2}) = \frac{1+u_2}{2}$
Now, for the range of u_2 , we have $0 \le y \le 1 \implies 0 \le 2y \le 2 \implies 0 \ge -2y \ge -2 \implies 1 \ge 1-2y \ge$

 $-1 \implies -1 \le u_2 \le 1.$ Hence, $f(u_2) = \frac{1+u_2}{2}; -1 \le u_2 \le 1.$

(c) Again, to find the distribution of $U_3 = Y^2$. We will use the Jacobian method to find the distribution of U_3 . U_3 .
 $U_3 = Y^2 \implies Y = \sqrt{U_3}$

Take the first derivative of Y with respect to U_3 ; $dy/du_3 = \frac{1}{2\sqrt{u_3}}$. Hence, the Jacobian; $|J| = |dy/du_3| = \frac{1}{2\sqrt{u_3}}$. $f(u_3) = |J|f_{u_3}(y) = \frac{1}{2\sqrt{u_3}} 2(1-\sqrt{u_3}) = \frac{1-\sqrt{u_3}}{\sqrt{u_3}}$ $-\sqrt{u_3}$ $\overline{u_3}$ Now, for the range of u_3 , we have $0 \le y \le 1 \implies 0 \le y^2 \le 1 \implies 0 \le u_3 \le 1$. Hence, $f(u_3) = \frac{1-\sqrt{u_3}}{\sqrt{u_3}}$ $\frac{\sqrt{u_3}}{u_3}; 0 \le u_3 \le 1.$

6.28

Given, Y follows Uniform $(0,1)$. So, $f(y) = 1; 0 < y < 1$ We have to find the distribution of $U = -2ln(Y)$. We will use the Jacobian method to find the distribution of U. $U = -2ln(Y) \implies -U/2 = lnY \implies Y = exp(-U/2)$ Take the first derivative of Y with respect to U ; $dy/du = exp(-u/2)(-1/2)$. Hence, the Jacobian; $|J| = |dy/du_1| = exp(-u/2)(1/2)$. $f(u) = |J|f_u(y) = exp(-u/2)(1/2).1 = exp(-u/2)(1/2)$ Now, for the range of u, we have $-\infty < ln y < 0 \implies 0 < -2ln y < \infty \implies 0 < u < \infty$ [as log is a decreasing function; so as $y \to 0$ then, $ln(y) \to \infty$] Hence, $f(u) = \frac{1}{2} exp(-u/2); 0 < u < \infty$. It is clear that \tilde{U} is now an exponential distribution with mean 2.

6.46

Given that, Y has a Gamma distribution with $\alpha = n/2$ for some positive integer n and β equal to some specified value.

Here we will use method of MGFs to find the distribution of $W = 2Y/\beta$. We know the MGF of Y is: $M_Y(t) = E(e^{tY}) = (1 - \beta t)^{-\alpha}$ Now, to find the MGF of W is:

$$
M_W(t) = E(e^{tW})
$$

= $E(e^{t(2Y/\beta)})$
= $E(e^{t(2Y/\beta)})$
= $E(e^{t'Y})$; where, $t' = 2t/\beta$
= $(1 - \beta t')^{-\alpha}$
= $(1 - \beta(2t/\beta))^{-\alpha}$
= $(1 - 2t)^{-\alpha}$

As $\alpha = n/2$, so, $M_W(t) = (1 - 2t)^{-\alpha} = (1 - 2t)^{-n/2}$. Which is a MGF of Chi-square distribution. Hence, $W = 2Y/\beta$ has a χ^2 distribution with n degrees of freedom.