

STAT 3375Q: Introduction to Mathematical Statistics I

Spring 2024

Week 13 Homework Exercises

Discussion Date: 19 April 2024

Problem 6.72

Let Y_1 and Y_2 be independent and uniformly distributed over the interval (0, 1). Find

- a) the PDF of $U_1 = \min(Y_1, Y_2)$.
- b) $E(U_1)$ and $V(U_1)$.

Let Y_1 and Y_2 be independent and uniformly distributed over the interval (0, 1). Find

a) the PDF of $U_2 = \max(Y_1, Y_2)$.

b) $E(U_2)$ and $V(U_2)$.

Let Y_1, Y_2, \ldots, Y_n be independent, uniformly distributed random variables on the interval $[0, \theta]$. Find the

- a) CDF of $Y_{(n)} = \max(Y_1, Y_2, \dots, Y_n)$.
- b) PDF of $Y_{(n)}$.
- c) $E(Y_{(n)})$ and $V(Y_{(n)})$.

Refer to Exercise 6.74. Suppose that the number of minutes that you need to wait for a bus is uniformly distributed on the interval [0, 15]. If you take the bus five times, what is the probability that your longest wait is less than 10 minutes?

Let Y_1, Y_2, \ldots, Y_n be independent random variables, each with a beta distribution, with $\alpha = \beta = 2$. Find

- a) CDF of $Y_{(n)} = \max(Y_1, Y_2, \dots, Y_n)$.
- b) PDF of $Y_{(n)}$.
- c) $E(Y_{(n)})$ when n = 2.