Solution for Week1 Discussion Session

Banani Bera

$\mathbf{2.1}$

Given that, there are four points in the set S of possible observations: $S = \{FF, FM, MF, MM\}$. Let A denote the subset of possibilities containing no males; i.e. $A = \{FF\}$ B, the subset containing two males; i.e. $B = \{MM\}$ And C, the subset containing at least one male; i.e. $C = \{MF, FM, MM\}$

Then, $A \cap B = \phi$; as set A and set B don't have any element in common. $A \cup B = FF, MM$; as union of A, B means the elements present collectively in A or B. $A \cap C = \phi$; as set A and set C don't have any element in common. $A \cup C = FF, FM, MF, MM = S$; as union of A, C contains all the elements in S. $B \cap C = \{MM\}$; as set B and set C have one common element i.e. MM. $B \cup C = FM, MF, MM = C$ Now, to find $C \cap \overline{B}$, first we have to find \overline{B} . So, \overline{B} ; the complement of set B contains all the elements in the universal set (S) but not in set B. $C \cap \overline{B} = \{MF, FM\}$.

$\mathbf{2.3}$

Venn diagrams to verify DeMorgan's laws that is, for any two sets A and B, $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ and $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$.

To verify $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$, we will sketch the Venn diagrams below:

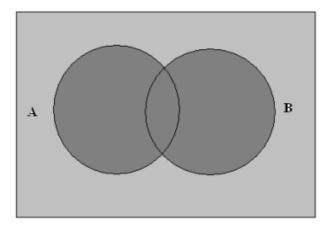


Figure 1: Venn Diagram

To verify $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ again we draw the Venn diagrams:

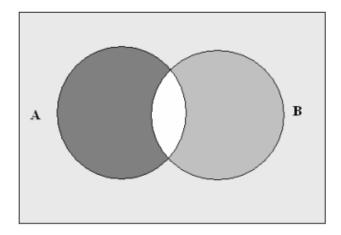


Figure 2: Venn Diagram

$\mathbf{2.5}$

We are given the identities $A = A \cap S$ and $S = B \cup \overline{B}$.

(a) Note that $A = A \cap S = A \cap (B \cup \overline{B})$. Therefore, using the distributive law, we get $A = (A \cap B) \cup (A \cap \overline{B})$. (b) If $B \subset A$, then $A \cap B = B$. Substituting $(A \cap B)$ by B in part (a) to get the result i.e. $A = (A \cap B) \cup (A \cap \overline{B}) = B \cup (A \cap \overline{B})$.

(c) $(A \cap B) \cap (A \cap \overline{B}) = A \cap (B \cap \overline{B}) \cap A = \phi$ (by associativity of intersection), since $B \cap \overline{B} = \phi$.

Therefore, using part (a), $A = (A \cap B) \cup (A \cap \overline{B})$, with $(A \cap B)$ and $(A \cap \overline{B})$ mutually exclusive. This completes the proof.

(d) $B \cap (A \cap \overline{B}) = B \cap \overline{B} \cap A = \phi$. If $B \subset A$, then $A \cap B = B$. Substitute $(A \cap B)$ by B in part (c) to get the result.

2.7

From the given information we have, $A = \{\text{two males}\} = \{(M1, M2), (M1, M3), (M2, M3)\}$ and $B = \{\text{at least one female}\} = \{(M1, W1), (M2, W1), (M3, W1), (M1, W2), (M2, W2), (W1, W2)\}$ Now, $\bar{B} = \{nofemales\} = A$ $A \cup B = \{(M1, M2), (M1, M3), (M2, M3), (M1, W1), (M2, W1), (M3, W1), (M1, W2), (M2, W2), (M3, W2), (W1, W2)\} = S$ $S = A \cap B = \phi$ $A \cap \bar{B} = A$; as $\bar{B} = \{\text{no females}\} = A$.

$\mathbf{2.8}$

Let consider two sets, one is undergrad student set and another is living off-campus students. From the given information we can draw the Venn Diagram as below: Given, Total number of students = 60

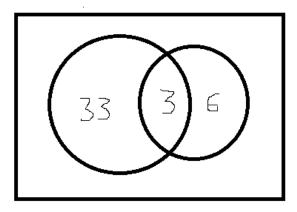


Figure 3: Venn Diagram

Number of Undergrad students = 36

Number of students living off campus = 9

And 3 were undergraduates living off campus i.e. undergrad \cap living off-campus = 3.

(a) Number of undergraduates, were living off campus, or both i.e. undergrad \cup living off-campus = (33+3+6) = 42.

(b) Number of undergraduates living on campus i.e. undergrad \cap living off-campus = undergrad - (undergrad \cap living off-campus) = 36-3 = 33.

(c) Number of graduate students living on campus i.e. $\overline{\text{undergrad}} \cap \overline{\text{living off-campus}}$.

Using DeMorgan's Law, we can write,

 $\overline{\text{undergrad}} \cap \overline{\text{living off-campus}} = \overline{(\text{undergrad} \cup \text{living off-campus})} = 60-42 = 18.$