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ABSTRACT ARTICLE HISTORY

When analyzing the spatio-temporal dependence in most environmental and earth sciences variables Received March 2019
such as pollutant concentrations at di erent levels of the atmosphere, a special property is observed: Accepted May 2022

the covariances and cross-covariances are stronger in certain directions. This property is attributed to the

presence of natural forces, such as wind, which caugeettransport and dispersion of these variables. This KEYWORDS _
spatio-temporal dynamics prompted the use of the Lagrangian reference frame alongside any Gaussian(lfross'cc."’a:(Iance f“”g'on;
spatio-temporal geostatistical model. Under this modeling framework, a whole new class was birthed and Mﬁ{rg?ggnvéitrir;envgpr '
was known as the class of spatio-temporal covariance functions under the Lagrangian framework, with \; sivariate random eld:
several developments already established in the unixiate setting, in both stationary and nonstationary  spatio-temporal; Transport
formulations, but less so in the multivariate case. Despite the many advances in this modeling approach, e ect

e orts have yetto be directed to probing the case for the use of multiple advections, especially when several

variables are involved. Accounting for multiple advections would make the Lagrangian framework a more

viable approach in modeling realistic multivariate transport scenarios. In this work, we establish a class of

Lagrangian spatio-temporal cross-covariance functions with multiple advections, study its properties, and

demonstrate its use on a bivariate pollutant dataset of particulate matter in Saudi Arabia. Supplementary

materials for this article are available online.

1. Introduction function C(h,u) =  Gj(h,u) !0,-: L onRY x R, with entries

Many environmental and earth sciences datasets record sevél@ined as follows:
variables at cer_tam Iocathns over cert_am perlo_ds of t_|me. The (h,u) = cov Zi(st),Z(s+ ht+u) . (hu) RIx R,
datasets contain rich spatio-temporal information which can be @)

used to enhance predictions. In geostatistics, spatio—tempo?rt ij= 1 p. Oen, C; is termed the marginal covari-
y - gy . ] J
;

ce function wheri = j and is called the cross-covariance
nction wheneveli = j. From (@), it is easy to check that
i(h,u) = Gi(Sh,Su), forany(h,uy RYx Randi,j =

data are used to calibrate the parameters of spatio-tempo
cross-covariance functions which are valid functions th
describe the spatio-temporal relationships within each variab
and between any two variables; see Genton and Kleiig, 1 However, it is not always the case ti@j(h,u) =
Alegria et al. 2019, and Salvafia and GentoB@F2(Q for recent e D _ X - s L

. ; : : L Gi(h,Su) = Gj(Sh,u) = Gj(Sh,Su) fori,j = 1,...,p.
reviews of the available models in the literature. In mult|var|atn?.hiS equality involving di erent combinations of the signs of

Gaussian spatio-temporal geostatistical modeling, we Workwime spatial lagh, and temporal lagy, is referred to as the full
spatio-temporal symmetry property. A consequence of the full

a spatio-temporal procesg(s,t) =  Yi(st),...,Yp(st)

(st) RIx R, such that at each spatial locatien RYLd 1, gpatio-temporal symmetry property is that the marginal and
and at each time R, there arep variables. A common ¢oss-covariances between observatiorgs, &t and (s+ h,t +
assumption or(s, ) is that it can be decomposed into & sumy) are equal to the marginal and cross-covariances between
of a deterministic and a random component, that is, observations as,t + u) and(s+ h,t). This property is highly
Y(st) = p(st) + Z(st), 1) restrictiye and most o en not exhibited by gnvironmental and
earth sciences data. For instance, when wind blows from West
where u(s,t) is a mean function and(s,t) is a zero-mean to East, an airborne substance can be transported such that
multivariate Gaussian spatio-temporal process. WiZ&gt) its concentration at a certain site will be highly correlated to
is second-order stationary, it is completely characterized hiie concentration, measured a er some time, at a site to its
its spatio-temporal matrix-valued stationary cross-covariandgast. Because of the speci ¢ direction of transport, the same

CONTACT Mary Lai O. Salvane. marylai.salvana@kaust.ecu. s@tatistics Program, King Abdullah University of Science and Technology (KAUST), Thuwal
23955-6900, Saudi Arabia.
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2 M. L. O. SALVANA, A. LENZI, AND M. G. GENTON

degree of correlation may not be expressed between the con-Several versions of the Lagrangian spatio-temporal covari-
centration at the aforementioned site and the concentratio@nce functions have appeared since the seminal work of Cox
measured a er some time, at a site to its West. This behaviend Isham (989. Park and Fuente200§ adapted the mod-
is recognized as spatio-temporal asymmetry in the margineling framework for axial symmetry in time, axial symme-
and cross-covariance structures (Gneiting, Genton, and Guttotpy in space, and diagonal symmetry in space. Porcu, Gregori,
2007 Huang, Sun, and Gentop02Q Chen, Genton, and Sun and Mateu 200§ explored some anisotropic extensions and
2021). Whenever such asymmetry is detected, more appropriafgristakos 2017 introduced an acceleration component. Sal-
spatio-temporal asymmetric cross-covariance functions ough@fia and Genton202Q proposed the multivariate extension
to be used such as the class of spatio-temporal asymmetsich that the model in3) remains valid when the underly-
models proposed in Steir20053, suitable fop = 1, and the ing purely spatial covariance function is a matrix-valued non-
latent dimensions model in Apanasovich and Gent@91Q, Stationary cross-covariance functid®™(sy,s;) on RY. Their
catering top > 1. spatio-temporal matrix-valued nonstationary extension has the
Within the category of models that captures spatio-tempordPrm:
asymmetric dependence, a rich subclass was established and . - S, & &
is dedicated to transported purely spatial random elds. The Clanszitta) = BACHSL S Vi % S Vi)L ®)
models under this subclass are termed spatio-temporal crog$ie above model includes the purely spatial matrix-valued sta-
covariance functions under the Lagrangian framework and tH#nary cross-covariance functions, that@(h), as the under-
pioneering work in the univariate setting is attributed to Coxlying purely spatial cross-covariance functions. Their umbrella
and Isham 1989. Under this modeling framework, consider atheoremrelies on a singiéwhich implies that every component
purely spatial random eld with a stationary covariance funcof Z(s,t)  RP is transported by the same advection velocity.
tion CS(h) and suppose that this entire random eld movesHowever, di erent variables may experience di erent transport
forward in time, with arandom advection velocy RY.This patterns which render the model i) inadequate. To deal with
means that the observations from all spatial locations are beitlyjs issue, they proposed a Lagrangian spatio-temporal cross-
advected or transported by one and the same random advectioavariance function that is a linear combination of uncorre-
velocity at each time. The resulting Lagrangian spatio-temporited univariate Lagrangian spatio-temporal covariance func-

covariance function has the form: tions, each depending on di erent advections. Their proposal is
B agood rst step to addressing this multiple advections problem.
C(h,u) = By C¥hSVu) , (3) When the marginal and cross-advections are introduced, that

o ) is, Vijj RY,i,j = 1,...,p several questions arise regarding

where the expectation is taken with respecMoThroughV,  he yalidity of the extended model, including which values of
one can transform a purely spatial random eld into a spatlovij, i = j, will preserve the positive de niteness of the cross-

temporal random eld. Moreover, by such a transformation to;gyariance matrix resulting froms}. In this work, we aim at
the spatial coordinates that incorporates information regardingnsv\,ermg such a fundamental question and providing a com-
a transport phenomenon, a spatio-temporal covariance funggenensive treatment to the Lagrangian spatio-temporal cross-
tion can be derived from a purely spatial covariance functionyoyariance functions with multiple advections, with a main

Depending on the distribution assumed by the model in 8)  focus on underlying purely spatial cross-covariance functions
may not have an explicit form, however, numerical solutiong,5t 5re stationary.

can be easily obtained. The simplest formfrhay be derived  The remainder of the article is organized as folloBesction 2

whenV is chosen to be constant, that ¥, = v, and the resents the proposed extension Bfith multiple advections
model is termed the frozen eld model. Several authors havg,q introduces some exampl@ection Hetails the estimation
used the frozen eld model to analyze wind speeds (GneitingycedureSection 4nvestigates the consequences of neglecting
Genton, and Guttorp2007 Ezzat, Jun, and Ding01§ and  yjtiple advections in multivariate Lagrangian spatio-temporal
solar irradiance (Inoue, Sasaki, and WasB{l2 Lonij et al.  mogeling.Section ompares the performance of the proposed
2013 Shinozaki et a01§. Intuitively, the frozen eld model qqels with other benchmark models in the literature using
is an unrealistic assumption and a highly idealized model @fiyariate pollutant data in Saudi Arabia. The conclusion is pre-

the transport phenomenon. Wind, for example, may or mayented inSection Gand proofs are collected in the Appendix.
not blow at any time of the day, and when it blows, the wind

speeds and directions are rarely identical. Therefore, models

that allow for variability of the transport, that is, the nonfrozen2. Lagrangian Framework with Multiple Advections
eld models, are preferred. An explicit form oB) exists when
V Ng(dy, v)andC¥ h )isanormal scale-mixture model
(Schlather201Q. The derived nonfrozen eld model has the

The validity of Lagrangian spatio-temporal cross-covariance
functions with a di erent advection for each variable can be
established by considering a zero-mean multivariate spatio-

form: temporal random eld
1
C(h, U) = —=— (4) = S S
= Z(st) = Z1(sS Viat),...,Zp(sS Vppt) (6)
xS hSpgu g+ P &1 hS | such thatZ(s) = Zi(9),...,Zp(s) is a zero-mean multi-

variate purely spatial random eld and every componentZof
wherel g is thed x d dimensional identity matrix. is transported by di erent random advectiong; RAi =
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1,...,p. The resulting matrix-valued spatio-temporal crossmaximum value occurs is & i 1)y Hv Us for the marginals,
covariance function of the process #) (s given inthe following  5ng at TB iy, for the cross-covariances. This means that
theorem. for a given temporal lagi, variablei measured at location

d s is highly dependent with variablemeasured at a location
Theorem 1.LetV1y,Voy,...,Vpp be random vectors oR®. If B(diél):(di)uV u away froms, i = 1,...,p. Moreover, for a

S i i i i - i . . . . . .
C (h).IS a valid purely ipatlal matrix-valued stationary Crossglventl and t, pair, variablei at s is highly dependent with
covariance function oY, then

variablej found at locationTB uy, fori,j = 1,...,p and
C(h;ty,tp) = By [{CX(h S Viity + ijtz)}ip-_ J, (7)y 1 = |- Second, the maximum absolute colocated correlation,

: = max GCj(0;t,t)/ G;i(0,0G;(0,0) , occursat = 0. Third, the

where the expectation is taken with respect to the joint distrigpsolute colocated correlatiorG;j (0;t,t)/  C;i(0,0)C;(0,0) ,

bution of V. = (Vy3,Vay,...,Vpy) , is a valid matrix-valued goes to zero af| . This means that the two variables
spatio-temporal cross-covariance function@fix R provided at the same location become statistically independent as time
that the expectation exists. moves away from zero.

Figure 1shows simulated Lagrangian spatio-temporal bivari-
WhenViji = V, foralli, the above model reduces to the singleite random elds from 9) and (10) on a 50x 50 regular
advection case. Moreover, the model ) ¢an be rewritten to grid in the unit square[0,12 for p = 2 andd = 2, with
resemble the form in3) such that the temporal lag, appears: the parsimonious Matérn cross-covariance functioag h )
) _ 5 = = (Gneiting, Kleiber, and Schlath@01Q. Panels (a)...(c) corre-
Clhity, 1) = By ([Cil's{h SVju+ (VS Vii)m}ﬁi: ). (8) spond to three dierent joint distributions ofV1; and V2o,
namely, (aV11 = 0.923, (b)V11andVasare independent, and
2 (c) V11 = S 0.9V2,. The purely spatial parameters were chosen

E)eerg;sthateiige?g; ;r:a\:gii arm?lgg\?;?itazitevlegrggii tgtgltisjr?a;ry schh that the practical spatial range of the variable with a less
time. Wheni = |, nonstationarity in time is introduced by smooth eld is equal to 0.7, that i1(h, 0/ €11(0,0) ~ 0.05

: . . . when h = 0.7. The marginal mean advection parameters are
the Lagrangian shi in the cross-covariances. This reveals an

) . . ; s follows: BV11) = (0.1,0.) , (V) = (50.1,0.] , and
important advantage of using the multiple advections mOdé\jar(Vll) = var(Va) = 0.1x I.

in (8). That IS, It p(_—:‘rmlts_ the cowatlon between The three scenarios described above imply di erent strengths
'twq vanabl_es, that is (.O.’t’t)/ C" (0.0G(0,0), to change of spatio-temporal dependence. For ease of comparison, we
in time, unlike the prevailing spatio-temporal Cross-covariancg '\ iate the samz4(s, 1) for every con guration and contrast
functions in the literature such as Bourotte, Allard, and POI’Cldi erent simulated Zx(st). It can be seen in Panels (a)...(c)
(2019 and.S.aIvana and Gento@@29. i . that while the direction of transport aZy(s,t) is to the North
~ Anexplicit form of (7) can also be derived similar tdXand  \yest in all three cases, the spatio-temporal random elds are
is given in the following theorem. substantially di erent, with the di erent scenarios in the joint
Theorem 2.For p 2,16tV = (ViyuVap. .. 1Vpp) distribution of V11 a_nd V22 having visible consequences in the
] i values oZ(s,t) as time progresses.
Npa(Hv, v)- If CS_( h') is a matrix-valued normal scale-  Figyre 2 illustrates how the multiple advections model
mixture cross-covariance function, then departs from the single advection model by showing the
S(h & 3 3 251 purely spatial correlation values for di erent combinations of
Gilths dei51):(di)uv W (la* Bisayay vU) temporal locationg; andt, via heatmaps under nine di erent
Gi(h.u) = x (h'S Bgig 1) (ayHv W} , advection scenaric_>s. The plots Figure 2narrate how strong
[lg + B ais 1):(di) v u?|y2 the _depend(_ance is betvyedl and_ Z _takgn at the same
©) spatial location but at di erent points in time. That i3,
measured at timey, is either behind, ahead, or at the same
whereB4ig 1)(dij) iS the sub-matrix of pq, comprised of it§diS  time asZp, measured at timé,. We evaluate the formulas

whereVj = V";Vﬂ andm = 452 Wheni = j, the

1)th and(di)th rows, fori = 1,...,p, and in (10 with di erent assumptions onV1; and Vaz. The rst
S & - row (I) gives the values of the colocated correlation when
G((hSTB uy) [laSTT T E(V11) = E(V22) = (0.1,0.} . The second row (Il) shows the
+(B v )él}gl-r 1(hSTB py)) values of the colocated correlation whefVi;) = (0.1,0.)
Gij(hita,t2) = , and HV2) = (0.2,0.)1 . The last row (lll) presents the

U2
g+ (B V)T T| values of the colocated correlation whe(Vi;) = (0.1,0.)

(10) and HV22) = (0.3,0.) . Furthermore, the vectory/11
whereT = (t1lg  Stolg), B = Byais1):(di) (s 1)(d)} SUch that and Vo are a_tssumed to be po;itively correlated in the rst
By(dis 1):(d) (i 1):(dj)} IS the sub-matrix ofl ,g comprised of its column, that is,Vi1 = 0.9z mdgpendent in the second.
(di S 1)th, (di)th, (dj S 1)th, and(dj)th rows, fori,j = 1,...,p, column, and negatively correlated in the last column, that is,
i=j. Vi1 = S 0.922. The nonstationarity in time is revealed by

the changing correlation values along each diagonal. The single
Several properties of nonfrozen Lagrangian spatio-tempora#ivection model is less exible as it does not allow for this
cross-covariance functions with multiple advections can beonstationarity in the correlation. A stationary in time model
identi ed based oriTheorem 2First, the spatial lag at which the Will have a constant value along every diagonal. The plot in the
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Figure 1. Simulated realizations of the Lagrangian spatio-teigsrsimonious Matérn cross-covariance functiprf@andd = 2, ona 50 50 regular grid in the
unit squargo, :I]2 with purely spatial parameters, namely= 0.5, 2o= 1.5,a= 0.23, = 0.5, 121 = 2?2 = 1. The plots on the left-hand side show the bivariate
spatio-temporal random elds simulated fr@rafd (0, where acommaf (s t) is simulated for every con guration shownanéls (a)...(c). The di erent realizations
of Zx(s t) under varying degrees of dependence betweeand\by, namely, ()11 = 0.9%>, (b)\1and\bs are independent, and (@), = S 0.94,are displayed in
Panels (a)...(c). The plots on the right hand side shavatie® spatio-temporal random elds simulated fa8nithd = 1,5, = 0.2s,, = 0. Similarly, acommon

Z1(st) is simulated for di erent realizationsp{s t) in Panels (d)-(f), where (d) @4y, \5,) = 0.9, (e) cdW¥; 1, \%,) = 0, and (f) caW; 4, Vo) = S0.9.

(1, position in Figure 2has correlation values that are thelocations. An interesting problem is to nd a form fovj; such
closest to the single advection model where the values on ttret

main diagonal should be constant and equal tdEven though B

this particular con guration comes close to the single advection C(h,u) = By [{C}(h S V; U)}ip,j: 1l (11)
scenario, the nuances appeartathat is,t = t; = tp, moves

away from zero. Whenm = 0, the correlation is equal to the is valid. HereV is the vector of marginal and cross-advections.
colocated correlation parameter of the parsimonious MatérBuppose fromX1) that we build the covariance matrix as
cross-covariance function, that is, with value set at 0.5. As follows:

It] , the colocated correlation decreases to zero. Moreover,

as the multiple advections model gets farther and farther from Ciivi Crovie - Cipvyy

the single advection model, the faster the drop of the colocated  _ Carvar Caovae 0 Copvy RIP<MP (1)
correlation to zero. This is what is shown by the plots in the rst - : : . : ’

row (I). The colocated correlation declines more rapidly when Crive: Co2ve, -+ Copv

V11 and V27 are negatively correlated compared to when they PV eV PR Yee

are positively correlated. The drop in the values of the coIocat(\aNdhere Civ, = Ev Cljs $555 Vit 1)

correlation is accelerated wheh ; andVo, have di erent mean lr=1

advections and this is what is displayed in the second (II) an®@™ ", fori,j = 1,...,p. For the model in{1) to be valid, has
third (1) rows of Figure 2 Overall, Figure 2conveys that to be positive de nite. By Theorem 1 in Ip and L2015, is
failing to acknowledge multiple advections can lead to overegesitive de nite if and only if thelnpx np) matrix K with entries

C . S $12 P . . .
timation or underestimation of the true dependence betweep _ CE\J/J__ZC"_ vi C§\1,/__2 g R s positive de nite.
any two variables. In doing so, prediction accuracy may be i TRV =1

a ected. HereAY 2is the symmetric square root of a square mafiguch

Inthe models so far, the cross-advectidfysi = j, cannotbe that AY2AY2 = A This result gives us more control regarding
prescribed independently of the temporal locations, that is, thtie transport or advection behavior in the cross-covariances.
transport behavior experienced in the cross-covariance remailewever, it remains a challenge to more precisely characterize
a function of the marginal advectiong; and the temporal Vj suchthaiK is indeed positive de nite.
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Figure 2. Heatmaps of values®fx(Gt1,t)/ G 1(0, 0Go(0, 0 for di erent combinations of temporal locations Z andty,  Z,t1,to [S 5, . The purely spatial
parameters are setas followg:= 0.5, 2> = 1.5,a= 0.23, = 0.5, 121= 222= 1. Forallplots(& 1) = (0.1,0.1 .RowsI-lll correspond{®p) = (0.1,0.1 ,
HW2) = (0.2,0.} ,and By = (0.3,0.1 , respectively. The dependence betwggand\b,in the left, center, and right columns se= 0.94>, independent,
and\Vj1 = S 0.9%, respectively. The evolution of tipatso-temporal dependence betweirandZ, di ers depending on the joint distribution of the advection
velocities.
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Manipulating the transport behavior in the cross-covariancegf v = {(V11’V11)’(V22'V22)v---a(Vppanp)} , is a valid

can also be dpne by_ de ning new dlme|_15|on_s In space %rpatio-temporal cross-covariance function d®?**d x R
time and allowing variable speci ¢ advections in those extrgmvided that the expectation exists

dimensions. The following theorem establishes a Lagrangian

spatio-temporal cross-covariance model that augments the whend = 1, S R can possibly be the altitude or
spatial dimensions. the location in thez-axis at which variablé was taken and
Vi  Risthe component of the advection velocity along that

d
Theorem 3.Let Vi3, V2z,...,Vpp be random vectors oR™ ;0 Augmenting the temporal dimensions can also be done

and V13, Vzp,. ..,V be random vectors oR?. If CX(h,h)  similarly. However, introducing a vector of temporal locations
is a valid purely spatial stationary cross-covariance function dfrings an unnatural physical interpretation to the Lagrangian
RI*d then transport phenomenon. Even in the classical univariate model
of Cox and Isham198§ in (3), the form of the Lagrangian shi
Gi{(h,hy);ts,t2} = E, {Cf(hé Viits+ Vjtz, hy SVt + Vjt2)}, when the temporal argument becomes a vector is nontrivial and
(13) hasnotyetbeen explored anywhere. A Lagrangiansié Vu,
whereh;, = s S Sj» for s, Spp RY, and the whereh R%u RY,andv R%Y jstheadvectionvelocity
expectation is taken with respect to the joint distributionmatrix, can be pursued when faced with multiple dimensions in
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time. The columns o¥ indicate the component of the transport 3. Estimation
velocity in every dimension of time. However, due to a lac . . . . S
S . . : n this section, we outline a viable estimation procedure

of useful physical interpretation of Lagrangian models with an . : . .

. . . . Involving Lagrangian spatio-temporal cross-covariance func-
advection velocity matrix, we discuss oniy3( and pursue the . . . . _
. . . e tions with multiple advections. Suppo¥e= {Y(sy,t1) ,...,
idea of advection velocity matrix in another work.

np ivari i0-
e simulate from 3 using the losed forms B and (A0 b L 2tond et s the total umber of spatior
such thatz; istaken afs ,0.2 andZpat(s ,0) ,thatis,Zy P P

: . : temporal locations ang is the number of variables. Assume

andZ; have the same locations in thlig-axis but are separated o . .
. ; ) - that the mean function in 1) can be characterized as a linear
0.2 units away in the-axis. Moreover, we set the advection

of Z; and Z; in the xy-axis to be the same, that is(\E;1) = COTb'(”at'On of s)ome ‘;),\‘A’F"j‘:'é‘;eéé}: >t(§rof };(génDerlg:r?e?eyrs
E(V22) = (0.1,0.1 , but we augment them with di erent TN leeep P '

vertical components. In particular, we setMand V,, such Where i = (' 1j..... w;) RM, fori = 1,...,p, andX =

that Z; gets transported downwards, whife gets transported  Ip  X(s1.t1) ,lp  X(s2,t2) ,....Ip  X(sntn)

upwards, that is, &,;) = S 0.05 and EV,,) = 0.05. Fur- R™MP whereX(st) = {Xi(st),...,Xm(s 1)} RM.

thermore, we consider three di erent strengths of dependencene model in () becomesY(s;t) = Ip X(st) +

between the vertical components, namely (a)(8y, V,,) =  Z(st). Furthermore, denote by () the np x np covariance
0.9, (b) cogV,,,V,,) = 0, and (c) cofVq;,V,) = S0.9. matrix, parameterized by RY such that () =

The realizations of the resulting bivariate Lagrangian spati¢-Cj(s S s;t;,t;| ) ipj: Il\=1- The mean parameters, and

temporal random eld are shown in Panels (d)...(fHgure 1 the cross-covariance parameters,are estimated via restricted
Another way to introduce multiple advections in themayimum likelihood (REML) estimation which proceeds by

Lagrangian framework while remaining stationary in timemaximizing, through an iterative procedure (Cressie and Lahiri
is by using latent uncorrelated univariate transported purelyggg Shor et al2019 egs. 4 and 5):

spatial random elds, each inuenced by di erent advection

velocities. Salvafia and Genta?0@(Q suggested such models p
with latent transported purely spatial random elds that are IREmi( » 3Y) = Ime( , ;Y) + > log(2)
second-order nonstationary. Their proposed model of course 1 .1 &1
remains valid when the latent transported purely spatial random 5 log|X X|S > log|X  ( )>7X],
elds are second-order stationary. We formalize such models in (16)
the following theorem. . np 1
he( . :Y) =S —-log(2) S 5logl ()]
Theorem 4.LetV,, r = 1,...,R, be random vectors oRY. 1 5
If (h) are valid univariate stationary correlation functions on SZ(YSX ) ()°HYsSx), @7
RY, then 2
R wherely g denotes the usual log-likelihood under maximum
C(h,u) = Ev, { r(hS V u)}T, (14) likelihood estimation (MLE). The iteration procedure begins
r=1 with an initialization of which we set to the ordinary least

is a valid spatio-temporal matrix-valued stationary crosssquares (OLS) estimateg s = (X X)>!X Y, and which
covariance function oiR? x R, foranyl R pandT, We plug-in to the log-likelihood equations above wherever

r=1,...,R are positive semide nite matrices. appears. _ _ _ _ o
Next, we estimate in a multi-step fashion. Splitting

The model in (4) is the resulting Lagrangian spatio-the estimation problem into several parts has been routinely
temporal cross-covariance function of the following multivari-employed when groups of parameters in the cross-covariance
ate spatio-temporal process: function can be estimated sequentially (Apanasovich and

Genton201Q Bourotte, Allard, and Porc2016 Qadir, Euan,

Z(st) = AW(s 1) and Sun202). Furthermore, it has been established that
A[W1(sS V1t),Wo(sS Vat),...,Wr(sS Vgrt)] ,  under some fairly general conditions, the multi-step procedure

(15) Yyields consistent estimators of the parameters in the last step
) . (Murphy and Topel2002 Zhelonkin, Genton, and Ronchetti
whereA is ap x Rmatrix and the components &#/(s,t) RR 2012 Greene2019. The parameters of any Lagrangian spatio-
are independent but not identically distributed. Each compogemporal cross-covariance function with multiple advections
nentW; has a univariate Lagrangian spatio-temporal stationary,ch thatv Npa(ly . v) can be partitioned in two, that
correlation function ((h S Viu), r = 1,...,R Here, T, = )
a3 , Wherea is therth column of A. Moreover, whetv; = 1S, = &, RY, where g  is the vector
Vo = --- = VR = V, we return to the single advection of parameters excluding the parameters associated with
velocity vector case and retrieve the Lagrangian spatio-tempoeald ,, are the parameters that buildy . Note that 5 |,
version of the linear model of coregionalization (LMC); seécludes all purely spatial parameters ang . We found that
Gelfand, Schmidt, and Sirmangd02 and WackernageR003 the parameters associated wity, should not be estimated
for the discussion of such class of purely spatial cross-covariaradengside those of v , otherwise, the MLE or REML estimates
functions. will converge to alocal maximum and we might obtain estimates



that are far from the true value. The elements oéire estimated
sequentially as follows:

Step 1: Initialize v and run the optimization through the
candidate vectorsg ,, and nd g ,, thatmaximizes
(16). This is likened to tting a frozen eld multiple
advections model.

Step 2: Fit the non-frozen eld version of the frozen multiple

advections model in Step 1 by nding ,, that maxi-
mizes (6) while xing the other parameters tos |, .

To ensure y remains positive de nite, its entries are

parameterized via its Cholesky decomposition.

Once = Sy v
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\% Ng(Hy, v) have zero-mean, the same variance, and
are uncorrelated, that igfy = Oand v = Zlg, for any

\3 > 0, the univariate Lagrangian spatio-temporal models with
normal scale-mixtureCS reduce to univariate non-Lagrangian
spatio-temporal isotropic covariance functions belonging to
the Gneiting class (Gneitin@003. A breakdown on any
of the above-mentioned restrictions dichotomizes univariate
Lagrangian spatio-temporal models from their non-Lagrangian
counterparts. Their simulation studies can be adoptegfor 1
and similar conclusions can be drawn.

When faced with a multivariate Lagrangian spatio-temporal

random eld with multiple advections, one can either t multi-
variate Lagrangian spatio-temporal models with multiple advec-

is obtained, we solve for tions, as in 8), or marginally t on each variable a univari-

oLs Where g sis the vector of estimates of the regressioft€ Lagrangian spatio-temporal model, as 3. While it has
coe cients via generalized least squares (GLS) of the foriaeen shown in the literature that multivariate modeling gener-
os = X ( )élx}élx ( )élY and loop again ally yields lower prediction errors as the presence of the other

through the above multi-step estimation of. The procedure is variables essent?ally increases the sample size of~0ne variable
terminated when a stopping criterion is reached. (Genton and Kleibe2013 Zhang and Ca2015 Salvafia et al.

We simulate 100 realizations of Gaussian bivariate spati6?2): it émains to be explored how the dependence between
temporal random elds of the form) with pi(s,t) = pi(s) = any two gd\{ectlgn velocities a ects p_redlctlon accuracy. To
0.5+ 0.5+ 0.5,i = 1,2, andZ(s,t) has a cross-covariance @nswer this inquiry, we perform experiments to identify sce-

function given in Theorem 2 with purely spatial parameters narios where multivariate Lagrangian spatio-temporal mod-
as inFigure 1and = 0.6, on a 20« 20 grid in the unit els with multiple advections are favorable over multiple uni-

square, at tim¢ = 0,1,...,4. We set B/11) = (0.1,0.) , vqriate L_agra_mgian spatio-temporal ones. Anothe_r objec_tive_ of
E(V2) = (50.2,50.9 , and Vi1 and V2, to be indepen- this sect_lon is t(_) show the consequences of using a b_|var_|ate
dent random vectorsFigure 3plots the estimates obtained -@grangian spatio-temporal cross-covariance function with sin-
using the proposed multi-step estimation under MLE?( and gle advection _to model a bivariate Lagrangian spatio-temporal
REML (L6). Note that we denote the entriespt, and y as 'andom eld with advections/y;  Ng{E(V11), varV1y)} and

My = (HiHzHaHe) and v = ( )iy, respectively. The V22~ Na{E(V22), vaiVzo)} such that V1) = E(V22) and
boxplots show that despite having 26 parameters to estimate,t\ﬁar(vll) = var(Vzo) but Vi1 = Vz2. Such bivariate random

proposed estimation procedure was able to obtain parameteer?ds appear to be driven by asingle advection when in fact they

estimates that are satisfactorily close to the true values bothe "°% The nature of dependence betwdgnandVz, may or

under MLE and REML. However, the variances of the paramet(ra'}ay not be useful in modeling or prediction. In this section, we

estimates, especially those associated with the mean functiglrw to expose such consequences.
tend to be smaller under REML. Hence, we employ REML in
the remainder of this article. 4.1. Design

When the observations at spatial locations are obtained ] ) . )
at regular intervals and there is negligible dependence betwethe simulation studies are framed under the assumption that
observations that are very distant in the temporal sense, accofi= 2 andp = 2. Consider the following Lagrangian spatio-
ing to Stein ROO5M, for large number of temporal locations, ~ €mporal models:

1 i L . . .
(16) can be approximated as € ML univariate Lagrangian spatio-temporal model #), (

lRem( » YY) Iremu( 5 Y1p) where CS is the Matérn covariance function with purely
T spatial parameters, a, ;
+ lrRem( » ;YjlYjst js1), (18) € M2: bivariate Lagrangian spatio-temporal model with single
j=t +1 advection, that is,
- Npt - i i

whereYap = (Ya,....Y,) RMPL Y = {Y(s,1) ..., Ci(h,u) = i i h$ pyu

Y(sn,t) } RNP, fora < b, andt speci es the number of [lg+ vu?|

consecutive temporal locations included in the conditional dis- 281 « . .

lg+ wvu hSupyu a5, i,j=1,2,

tribution. Here lremu( . ;YjlYjst j51) is the log-likelihood
function based only on the vector of spatio-temporal measure-
mentsYjst js1 = YjSt e

whereM (' h ;a, ) isthe univariate Matérn correlation with
spatial range and smoothness parameteend , respec-
tively; and

€ Ma3: bivariate Lagrangian spatio-temporal model with mul-
tiple advections in9) and (10), whereC”-S is the parsimo-
nious Matérn cross-covariance function, with purely spatial
parameters, j,a, jj,i,j= 1,2.

ijél

4. Simulation Study

Under the single advection setting and fpr = 1, Salvafia
and Genton 202) showed that when the components of
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