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ABSTRACT
When analyzing the spatio-temporal dependence in most environmental and earth sciences variables
such as pollutant concentrations at di�erent levels of the atmosphere, a special property is observed:
the covariances and cross-covariances are stronger in certain directions. This property is attributed to the
presence of natural forces, such as wind, which cause the transport and dispersion of these variables. This
spatio-temporal dynamics prompted the use of the Lagrangian reference frame alongside any Gaussian
spatio-temporal geostatistical model. Under this modeling framework, a whole new class was birthed and
was known as the class of spatio-temporal covariance functions under the Lagrangian framework, with
several developments already established in the univariate setting, in both stationary and nonstationary
formulations, but less so in the multivariate case. Despite the many advances in this modeling approach,
e�orts have yet to be directed to probing the case for the use of multiple advections, especially when several
variables are involved. Accounting for multiple advections would make the Lagrangian framework a more
viable approach in modeling realistic multivariate transport scenarios. In this work, we establish a class of
Lagrangian spatio-temporal cross-covariance functions with multiple advections, study its properties, and
demonstrate its use on a bivariate pollutant dataset of particulate matter in Saudi Arabia. Supplementary
materials for this article are available online.
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1. Introduction

Many environmental and earth sciences datasets record several
variables at certain locations over certain periods of time. These
datasets contain rich spatio-temporal information which can be
used to enhance predictions. In geostatistics, spatio-temporal
data are used to calibrate the parameters of spatio-temporal
cross-covariance functions which are valid functions that
describe the spatio-temporal relationships within each variable
and between any two variables; see Genton and Kleiber (2015),
Alegría et al. (2019), and Salvaña and Genton (2020) for recent
reviews of the available models in the literature. In multivariate
Gaussian spatio-temporal geostatistical modeling, we work with
a spatio-temporal processY(s, t) =

�
Y1(s, t), . . . ,Yp(s, t)

� � ,
(s, t) � Rd × R, such that at each spatial locations � Rd,d � 1,
and at each timet � R, there arep variables. A common
assumption onY(s, t) is that it can be decomposed into a sum
of a deterministic and a random component, that is,

Y(s, t) = µ (s, t) + Z(s, t), (1)

whereµ (s, t) is a mean function andZ(s, t) is a zero-mean
multivariate Gaussian spatio-temporal process. WhenZ(s, t)
is second-order stationary, it is completely characterized by
its spatio-temporal matrix-valued stationary cross-covariance
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function C(h,u) =
�
Cij (h,u)

� p
i,j= 1 on Rd × R, with entries

de�ned as follows:

Cij (h,u) = cov
�
Zi(s, t),Zj(s+ h, t + u)

�
, (h,u) � Rd × R,

(2)
for i, j = 1,. . . ,p. O�en, Cij is termed the marginal covari-
ance function wheni = j and is called the cross-covariance
function wheneveri �= j. From (2), it is easy to check that
Cij (h,u) = Cji (Šh,Šu), for any(h,u) � Rd × R and i, j =
1,. . . ,p. However, it is not always the case thatCij (h,u) =
Cij (h,Šu) = Cij (Šh,u) = Cij (Šh,Šu) for i, j = 1,. . . ,p.
This equality involving di�erent combinations of the signs of
the spatial lag,h, and temporal lag,u, is referred to as the full
spatio-temporal symmetry property. A consequence of the full
spatio-temporal symmetry property is that the marginal and
cross-covariances between observations at(s, t) and(s+ h, t +
u) are equal to the marginal and cross-covariances between
observations at(s, t + u) and(s+ h, t). This property is highly
restrictive and most o�en not exhibited by environmental and
earth sciences data. For instance, when wind blows from West
to East, an airborne substance can be transported such that
its concentration at a certain site will be highly correlated to
the concentration, measured a�er some time, at a site to its
East. Because of the speci�c direction of transport, the same

© 2022 American Statistical Association
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degree of correlation may not be expressed between the con-
centration at the aforementioned site and the concentration,
measured a�er some time, at a site to its West. This behavior
is recognized as spatio-temporal asymmetry in the marginal
and cross-covariance structures (Gneiting, Genton, and Guttorp
2007; Huang, Sun, and Genton2020; Chen, Genton, and Sun
2021). Whenever such asymmetry is detected, more appropriate
spatio-temporal asymmetric cross-covariance functions ought
to be used such as the class of spatio-temporal asymmetric
models proposed in Stein (2005a), suitable forp = 1, and the
latent dimensions model in Apanasovich and Genton (2010),
catering top > 1.

Within the category of models that captures spatio-temporal
asymmetric dependence, a rich subclass was established and
is dedicated to transported purely spatial random �elds. The
models under this subclass are termed spatio-temporal cross-
covariance functions under the Lagrangian framework and the
pioneering work in the univariate setting is attributed to Cox
and Isham (1988). Under this modeling framework, consider a
purely spatial random �eld with a stationary covariance func-
tion CS(h) and suppose that this entire random �eld moves
forward in time, with a random advection velocityV � Rd. This
means that the observations from all spatial locations are being
advected or transported by one and the same random advection
velocity at each time. The resulting Lagrangian spatio-temporal
covariance function has the form:

C(h,u) = EV
�
CS(h Š Vu)

�
, (3)

where the expectation is taken with respect toV. ThroughV,
one can transform a purely spatial random �eld into a spatio-
temporal random �eld. Moreover, by such a transformation to
the spatial coordinates that incorporates information regarding
a transport phenomenon, a spatio-temporal covariance func-
tion can be derived from a purely spatial covariance function.
Depending on the distribution assumed byV, the model in (3)
may not have an explicit form, however, numerical solutions
can be easily obtained. The simplest form of (3) may be derived
when V is chosen to be constant, that is,V = v, and the
model is termed the frozen �eld model. Several authors have
used the frozen �eld model to analyze wind speeds (Gneiting,
Genton, and Guttorp2007; Ezzat, Jun, and Ding2018) and
solar irradiance (Inoue, Sasaki, and Washio2012; Lonij et al.
2013; Shinozaki et al.2016). Intuitively, the frozen �eld model
is an unrealistic assumption and a highly idealized model of
the transport phenomenon. Wind, for example, may or may
not blow at any time of the day, and when it blows, the wind
speeds and directions are rarely identical. Therefore, models
that allow for variability of the transport, that is, the nonfrozen
�eld models, are preferred. An explicit form of (3) exists when
V � Nd(µ V, � V) andCS(� h� ) is a normal scale-mixture model
(Schlather2010). The derived nonfrozen �eld model has the
form:

C(h,u) =
1

�
|Id + � Vu2|

(4)

× CS� �
h Š µ Vu

� � �
Id + � Vu2� Š1 �

h Š µ Vu
� �

,

whereId is thed × d dimensional identity matrix.

Several versions of the Lagrangian spatio-temporal covari-
ance functions have appeared since the seminal work of Cox
and Isham (1988). Park and Fuentes (2006) adapted the mod-
eling framework for axial symmetry in time, axial symme-
try in space, and diagonal symmetry in space. Porcu, Gregori,
and Mateu (2006) explored some anisotropic extensions and
Christakos (2017) introduced an acceleration component. Sal-
vaña and Genton (2020) proposed the multivariate extension
such that the model in (3) remains valid when the underly-
ing purely spatial covariance function is a matrix-valued non-
stationary cross-covariance functionCS(s1,s2) on Rd. Their
spatio-temporal matrix-valued nonstationary extension has the
form:

C(s1,s2; t1, t2) = EV{CS(s1 Š Vt1,s2 Š Vt2)}. (5)

The above model includes the purely spatial matrix-valued sta-
tionary cross-covariance functions, that is,CS(h), as the under-
lying purely spatial cross-covariance functions. Their umbrella
theorem relies on a singleV which implies that every component
of Z(s, t) � Rp is transported by the same advection velocity.
However, di�erent variables may experience di�erent transport
patterns which render the model in (5) inadequate. To deal with
this issue, they proposed a Lagrangian spatio-temporal cross-
covariance function that is a linear combination of uncorre-
lated univariate Lagrangian spatio-temporal covariance func-
tions, each depending on di�erent advections. Their proposal is
a good �rst step to addressing this multiple advections problem.
When the marginal and cross-advections are introduced, that
is, Vij � Rd, i, j = 1,. . . ,p, several questions arise regarding
the validity of the extended model, including which values of
Vij , i �= j, will preserve the positive de�niteness of the cross-
covariance matrix resulting from (5). In this work, we aim at
answering such a fundamental question and providing a com-
prehensive treatment to the Lagrangian spatio-temporal cross-
covariance functions with multiple advections, with a main
focus on underlying purely spatial cross-covariance functions
that are stationary.

The remainder of the article is organized as follows.Section 2
presents the proposed extension of (5) with multiple advections
and introduces some examples.Section 3details the estimation
procedure.Section 4investigates the consequences of neglecting
multiple advections in multivariate Lagrangian spatio-temporal
modeling.Section 5compares the performance of the proposed
models with other benchmark models in the literature using
bivariate pollutant data in Saudi Arabia. The conclusion is pre-
sented inSection 6and proofs are collected in the Appendix.

2. Lagrangian Framework with Multiple Advections

The validity of Lagrangian spatio-temporal cross-covariance
functions with a di�erent advection for each variable can be
established by considering a zero-mean multivariate spatio-
temporal random �eld

Z(s, t) =
�

�Z1(sŠ V11t), . . . , �Zp(sŠ Vppt)
� � , (6)

such that �Z(s) =
�

�Z1(s), . . . , �Zp(s)
� � is a zero-mean multi-

variate purely spatial random �eld and every component of�Z
is transported by di�erent random advectionsVii � Rd, i =
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1,. . . ,p. The resulting matrix-valued spatio-temporal cross-
covariance function of the process in (6) is given in the following
theorem.

Theorem 1.Let V11,V22, . . . ,Vpp be random vectors onRd. If
CS(h) is a valid purely spatial matrix-valued stationary cross-
covariance function onRd, then

C(h; t1, t2) = EV [{CS
ij (h Š Vii t1 + Vjj t2)}p

i,j= 1], (7)

where the expectation is taken with respect to the joint distri-
bution of V = (V�

11,V
�
22, . . . ,V�

pp)
� , is a valid matrix-valued

spatio-temporal cross-covariance function onRd × R provided
that the expectation exists.

WhenVii = V, for alli, the above model reduces to the single
advection case. Moreover, the model in (7) can be rewritten to
resemble the form in (3) such that the temporal lag,u, appears:

C(h; t1, t2) = EV ([CS
ij {h Š Viju + (Vjj Š Vii )m}p

i,j= 1]), (8)

where Vij =
Vii + Vjj

2 and m = t1+ t2
2 . When i = j, the

term that depends on the midpoint betweent1 and t2 disap-
pears. Hence, the marginal covariances remain stationary in
time. When i �= j, nonstationarity in time is introduced by
the Lagrangian shi� in the cross-covariances. This reveals an
important advantage of using the multiple advections model
in (8). That is, it permits the colocated correlation between
two variables, that is,Cij (0; t, t)/

�
Cii (0, 0)Cjj (0, 0), to change

in time, unlike the prevailing spatio-temporal cross-covariance
functions in the literature such as Bourotte, Allard, and Porcu
(2016) and Salvaña and Genton (2020).

An explicit form of (7) can also be derived similar to (4) and
is given in the following theorem.

Theorem 2.For p � 2, let V = (V�
11,V

�
22, . . . ,V�

pp)
� �

Npd(µ V , � V ). If CS(� h� ) is a matrix-valued normal scale-
mixture cross-covariance function, then

Cii (h,u) =

CS
ii {(h Š B�

(diŠ1):(di)µ V u)� (Id + B�
(diŠ1):(di) � V u2)Š1

× (h Š B�
(diŠ1):(di)µ V u)}

|Id + B�
(diŠ1):(di) � V u2|1/ 2

,

(9)

whereB(diŠ1):(di) is the sub-matrix ofIpd, comprised of its(diŠ
1)th and(di)th rows, fori = 1,. . . ,p, and

Cij (h; t1, t2) =

CS
ij ((h Š T �B� µ V )� [Id Š T{T� T

+ ( �B� � V )Š1}Š1T� ](h Š T �B� µ V ))

|I2d + ( �B� � V )T� T|1/ 2
,

(10)

whereT = (t1Id Š t2Id), �B = B{(diŠ1):(di),(djŠ1):(dj)}, such that
B{(diŠ1):(di),(djŠ1):(dj)} is the sub-matrix ofIpd comprised of its
(di Š 1)th, (di)th, (dj Š 1)th, and(dj)th rows, fori, j = 1,. . . ,p,
i �= j.

Several properties of nonfrozen Lagrangian spatio-temporal
cross-covariance functions with multiple advections can be
identi�ed based onTheorem 2. First, the spatial lag at which the

maximum value occurs is atB�
(diŠ1):(di)µ V u, for the marginals,

and at T �B� µ V , for the cross-covariances. This means that
for a given temporal lagu, variablei measured at location
s is highly dependent with variablei measured at a location
B�

(diŠ1):(di)µ V u away froms, i = 1,. . . ,p. Moreover, for a
given t1 and t2 pair, variablei at s is highly dependent with
variablej found at locationT �B� µ V , for i, j = 1,. . . ,p and
i �= j. Second, the maximum absolute colocated correlation,
maxt

�
�Cij (0; t, t)/

�
Cii (0, 0)Cjj (0, 0)

�
�, occurs att = 0. Third, the

absolute colocated correlation,
�
�Cij (0; t, t)/

�
Cii (0, 0)Cjj (0, 0)

�
�,

goes to zero as|t| � 	 . This means that the two variables
at the same location become statistically independent as time
moves away from zero.

Figure 1shows simulated Lagrangian spatio-temporal bivari-
ate random �elds from (9) and (10) on a 50× 50 regular
grid in the unit square[0, 1]2 for p = 2 and d = 2, with
the parsimonious Matérn cross-covariance function asCS(� h� )
(Gneiting, Kleiber, and Schlather2010). Panels (a)…(c) corre-
spond to three di�erent joint distributions ofV11 and V22,
namely, (a)V11 = 0.9V22, (b)V11andV22are independent, and
(c) V11 = Š 0.9V22. The purely spatial parameters were chosen
such that the practical spatial range of the variable with a less
smooth �eld is equal to 0.7, that is,C11(h, 0)/ C11(0, 0) 
 0.05
when� h� = 0.7. The marginal mean advection parameters are
as follows: E(V11) = (0.1, 0.1)� , E(V22) = (Š0.1, 0.1)� , and
var(V11) = var(V22) = 0.1× I2.

The three scenarios described above imply di�erent strengths
of spatio-temporal dependence. For ease of comparison, we
simulate the sameZ1(s, t) for every con�guration and contrast
di�erent simulated Z2(s, t). It can be seen in Panels (a)…(c)
that while the direction of transport ofZ2(s, t) is to the North
West in all three cases, the spatio-temporal random �elds are
substantially di�erent, with the di�erent scenarios in the joint
distribution of V11 andV22 having visible consequences in the
values ofZ2(s, t) as time progresses.

Figure 2 illustrates how the multiple advections model
departs from the single advection model by showing the
purely spatial correlation values for di�erent combinations of
temporal locationst1 andt2 via heatmaps under nine di�erent
advection scenarios. The plots inFigure 2narrate how strong
the dependence is betweenZ1 and Z2 taken at the same
spatial location but at di�erent points in time. That is,Z1,
measured at timet1, is either behind, ahead, or at the same
time asZ2, measured at timet2. We evaluate the formulas
in (10) with di�erent assumptions onV11 and V22. The �rst
row (I) gives the values of the colocated correlation when
E(V11) = E(V22) = (0.1, 0.1)� . The second row (II) shows the
values of the colocated correlation when E(V11) = (0.1, 0.1)�

and E(V22) = (0.2, 0.1)� . The last row (III) presents the
values of the colocated correlation when E(V11) = (0.1, 0.1)�

and E(V22) = (0.3, 0.1)� . Furthermore, the vectorsV11
and V22 are assumed to be positively correlated in the �rst
column, that is,V11 = 0.9V22, independent in the second
column, and negatively correlated in the last column, that is,
V11 = Š 0.9V22. The nonstationarity in time is revealed by
the changing correlation values along each diagonal. The single
advection model is less �exible as it does not allow for this
nonstationarity in the correlation. A stationary in time model
will have a constant value along every diagonal. The plot in the
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Figure 1.Simulated realizations of the Lagrangian spatio-temporal parsimonious Matérn cross-covariance function forp = 2 andd = 2, on a 50× 50 regular grid in the
unit square[0, 1]2 with purely spatial parameters, namely,� 11 = 0.5, � 22 = 1.5,a = 0.23,� = 0.5, � 2

11 = � 2
22 = 1. The plots on the left-hand side show the bivariate

spatio-temporal random �elds simulated from (9) and (10), where a commonZ1(s,t) is simulated for every con�guration shown in Panels (a)…(c). The di�erent realizations
ofZ2(s,t) under varying degrees of dependence betweenV11andV22, namely, (a)V11 = 0.9V22, (b)V11andV22are independent, and (c)V11 = Š 0.9V22are displayed in
Panels (a)…(c). The plots on the right hand side show the bivariate spatio-temporal random �elds simulated from (13) withd� = 1,s�11 = 0.2,s�22 = 0. Similarly, a common
Z1(s,t) is simulated for di�erent realizations ofZ2(s,t) in Panels (d)-(f), where (d) cov(V�

11, V�
22) = 0.9, (e) cov(V�

11, V�
22) = 0, and (f) cov(V�

11, V�
22) = Š 0.9.

(1, 1) position in Figure 2has correlation values that are the
closest to the single advection model where the values on the
main diagonal should be constant and equal to� . Even though
this particular con�guration comes close to the single advection
scenario, the nuances appear ast, that is,t = t1 = t2, moves
away from zero. Whent = 0, the correlation is equal to the
colocated correlation parameter of the parsimonious Matérn
cross-covariance function, that is,� with value set at 0.5. As
|t| � 	 , the colocated correlation decreases to zero. Moreover,
as the multiple advections model gets farther and farther from
the single advection model, the faster the drop of the colocated
correlation to zero. This is what is shown by the plots in the �rst
row (I). The colocated correlation declines more rapidly when
V11 and V22 are negatively correlated compared to when they
are positively correlated. The drop in the values of the colocated
correlation is accelerated whenV11andV22have di�erent mean
advections and this is what is displayed in the second (II) and
third (III) rows of Figure 2. Overall,Figure 2conveys that
failing to acknowledge multiple advections can lead to overes-
timation or underestimation of the true dependence between
any two variables. In doing so, prediction accuracy may be
a�ected.

In the models so far, the cross-advectionsVij , i �= j, cannot be
prescribed independently of the temporal locations, that is, the
transport behavior experienced in the cross-covariance remains
a function of the marginal advectionsVii and the temporal

locations. An interesting problem is to �nd a form forVij such
that

C(h,u) = EV [{CS
ij (h Š Viju)}p

i,j= 1], (11)

is valid. HereV is the vector of marginal and cross-advections.
Suppose from (11) that we build the covariance matrix� as
follows:

� =

�

	
	
	



C11,V11 C12,V12 · · · C1p,V1p

C21,V21 C22,V22 · · · C2p,V2p

...
...

...
...

Cp1,Vp1 Cp2,Vp2 · · · Cpp,Vpp

�

�
�
�


� Rnp× np, (12)

where Cij,Vij =
�
EV

�
CS

ij

�
sl Š sr Š Vij (tl Š tr)

� �� n

l,r= 1
�

Rn× n, for i, j = 1,. . . ,p. For the model in (11) to be valid,� has
to be positive de�nite. By Theorem 1 in Ip and Li (2015), � is
positive de�nite if and only if the(np× np) matrixK with entries

K =
�
CŠ1/ 2

ii ,Vii
Cij ,Vij C

Š1/ 2
jj ,Vjj

� p

i,j= 1
� Rnp× np is positive de�nite.

HereA1/ 2 is the symmetric square root of a square matrixA such
that A1/ 2A1/ 2 = A. This result gives us more control regarding
the transport or advection behavior in the cross-covariances.
However, it remains a challenge to more precisely characterize
Vij such thatK is indeed positive de�nite.
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Figure 2.Heatmaps of values ofC12(0;t1,t2)/
�

C11(0, 0)C22(0, 0) for di�erent combinations of temporal locationst1 � Z andt2 � Z, t1,t2 � [Š 5, 5]. The purely spatial
parameters are set as follows:� 11 = 0.5, � 22 = 1.5,a = 0.23,� = 0.5, � 2

11 = � 2
22 = 1. For all plots, E(V11) = (0.1, 0.1)� . Rows I-III correspond to E(V22) = (0.1, 0.1)� ,

E(V22) = (0.2, 0.1)� , and E(V22) = (0.3, 0.1)� , respectively. The dependence betweenV11andV22 in the left, center, and right columns areV11 = 0.9V22, independent,
andV11 = Š 0.9V22, respectively. The evolution of the spatio-temporal dependence betweenZ1 andZ2 di�ers depending on the joint distribution of the advection
velocities.

Manipulating the transport behavior in the cross-covariances
can also be done by de�ning new dimensions in space or
time and allowing variable speci�c advections in those extra
dimensions. The following theorem establishes a Lagrangian
spatio-temporal cross-covariance model that augments the
spatial dimensions.

Theorem 3.Let V11,V22, . . . ,Vpp be random vectors onRd

and V�
11,V

�
22, . . . ,V�

pp be random vectors onRd�
. If CS

ij (h,h�)
is a valid purely spatial stationary cross-covariance function on
Rd+ d�

, then

Cij {(h,h�
ij ); t1, t2} = E �V {CS

ij (hŠ Vii t1+ Vjj t2,h�
ij Š V�

ii t1+ V�
jj t2)},
(13)

where h�
ij = s�

ii Š s�
jj , for s�

ii , . . . ,s�
pp � Rd�

, and the
expectation is taken with respect to the joint distribution

of �V = { (V�
11,V

��
11), (V�

22,V
��
22), . . . , (V�

pp,V
��
pp)}� , is a valid

spatio-temporal cross-covariance function onRd+ d�
× R

provided that the expectation exists.

When d� = 1, s�
ii � R can possibly be the altitude or

the location in thez-axis at which variablei was taken and
V�

ii � R is the component of the advection velocity along that
axis. Augmenting the temporal dimensions can also be done
similarly. However, introducing a vector of temporal locations
brings an unnatural physical interpretation to the Lagrangian
transport phenomenon. Even in the classical univariate model
of Cox and Isham (1988) in (3), the form of the Lagrangian shi�
when the temporal argument becomes a vector is nontrivial and
has not yet been explored anywhere. A Lagrangian shi�hŠ V̈u,
whereh � Rd,u � Rd��

, andV̈ � Rd× d��
is the advection velocity

matrix, can be pursued when faced with multiple dimensions in
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time. The columns of̈V indicate the component of the transport
velocity in every dimension of time. However, due to a lack
of useful physical interpretation of Lagrangian models with an
advection velocity matrix, we discuss only (13) and pursue the
idea of advection velocity matrix in another work.

We simulate from (13) using the closed forms in (9) and (10)
such thatZ1 is taken at(s� , 0.2)� andZ2 at (s� , 0)� , that is,Z1
andZ2 have the same locations in thexy-axis but are separated
0.2 units away in thez-axis. Moreover, we set the advection
of Z1 and Z2 in the xy-axis to be the same, that is, E(V11) =
E(V22) = (0.1, 0.1)� , but we augment them with di�erent
vertical components. In particular, we set V�

11 and V�
22 such

that Z1 gets transported downwards, whileZ2 gets transported
upwards, that is, E(V�

11) = Š 0.05 and E(V�
22) = 0.05. Fur-

thermore, we consider three di�erent strengths of dependence
between the vertical components, namely (a) cov(V�

11, V�
22) =

0.9, (b) cov(V�
11, V�

22) = 0, and (c) cov(V�
11, V�

22) = Š 0.9.
The realizations of the resulting bivariate Lagrangian spatio-
temporal random �eld are shown in Panels (d)…(f) inFigure 1.

Another way to introduce multiple advections in the
Lagrangian framework while remaining stationary in time
is by using latent uncorrelated univariate transported purely
spatial random �elds, each in�uenced by di�erent advection
velocities. Salvaña and Genton (2020) suggested such models
with latent transported purely spatial random �elds that are
second-order nonstationary. Their proposed model of course
remains valid when the latent transported purely spatial random
�elds are second-order stationary. We formalize such models in
the following theorem.

Theorem 4.Let Vr, r = 1,. . . ,R, be random vectors onRd.
If � r (h) are valid univariate stationary correlation functions on
Rd, then

C(h,u) =
R�

r= 1

EVr {� r (h Š Vru)} Tr (14)

is a valid spatio-temporal matrix-valued stationary cross-
covariance function onRd × R, for any 1  R  p and Tr,
r = 1,. . . ,R, are positive semide�nite matrices.

The model in (14) is the resulting Lagrangian spatio-
temporal cross-covariance function of the following multivari-
ate spatio-temporal process:

Z(s, t) = AW(s, t)

= A[W1(sŠ V1t),W2(sŠ V2t), . . . ,WR(sŠ VRt)]� ,
(15)

whereA is ap × Rmatrix and the components ofW(s, t) � RR

are independent but not identically distributed. Each compo-
nentWr has a univariate Lagrangian spatio-temporal stationary
correlation function� r(h Š Vru), r = 1,. . . ,R. Here,Tr =
ara�

r , wherear is therth column ofA. Moreover, whenV1 =
V2 = · · · = VR = V, we return to the single advection
velocity vector case and retrieve the Lagrangian spatio-temporal
version of the linear model of coregionalization (LMC); see
Gelfand, Schmidt, and Sirmans (2002) and Wackernagel (2003)
for the discussion of such class of purely spatial cross-covariance
functions.

3. Estimation

In this section, we outline a viable estimation procedure
involving Lagrangian spatio-temporal cross-covariance func-
tions with multiple advections. SupposeY = { Y(s1, t1)� , . . . ,
Y(sn, tn)� }� � Rnp is an np-vector of multivariate spatio-
temporal observations such thatn is the total number of spatio-
temporal locations andp is the number of variables. Assume
that the mean function in (1) can be characterized as a linear
combination of some covariatesX1,X2, . . . ,XM. Denote by
� = (� �

1 , . . . , � �
p )� � RMp the vector of mean parameters,

where� i = (� 1,i , . . . , � M,i )� � RM, for i = 1,. . . ,p, andX =
�
Ip � X(s1, t1)� , Ip � X(s2, t2)� , . . . , Ip � X(sn, tn)�

� � �
Rnp× Mp, whereX(s, t) = {X1(s, t), . . . ,XM(s, t)}� � RM.
The model in (1) becomesY(s, t) =

�
Ip � X(s, t)�

�
� +

Z(s, t). Furthermore, denote by� (� ) the np × np covariance
matrix, parameterized by� � Rq such that � (� ) =
[
�
Cij (sl Š sr; tl , tr |� )

� p
i,j= 1]nl,r= 1. The mean parameters,� , and

the cross-covariance parameters,� , are estimated via restricted
maximum likelihood (REML) estimation which proceeds by
maximizing, through an iterative procedure (Cressie and Lahiri
1996; Shor et al.2019, eqs. 4 and 5):

lREML(� , � ;Y) = lMLE(� , � ;Y) +
Mp
2

log(2�)

+
1
2

log|X� X| Š
1
2

log|X� � (� )Š1X|,

(16)

lMLE(� , � ;Y) = Š
np
2

log(2�) Š
1
2

log|� (� )|

Š
1
2

(Y Š X� )� � (� )Š1(Y Š X� ), (17)

wherelMLE denotes the usual log-likelihood under maximum
likelihood estimation (MLE). The iteration procedure begins
with an initialization of � which we set to the ordinary least
squares (OLS) estimate,�� OLS = (X� X)Š1X� Y, and which
we plug-in to the log-likelihood equations above wherever�
appears.

Next, we estimate� in a multi-step fashion. Splitting
the estimation problem into several parts has been routinely
employed when groups of parameters in the cross-covariance
function can be estimated sequentially (Apanasovich and
Genton2010; Bourotte, Allard, and Porcu2016; Qadir, Euán,
and Sun 2021). Furthermore, it has been established that
under some fairly general conditions, the multi-step procedure
yields consistent estimators of the parameters in the last step
(Murphy and Topel2002; Zhelonkin, Genton, and Ronchetti
2012; Greene2014). The parameters of any Lagrangian spatio-
temporal cross-covariance function with multiple advections
such thatV � Npd(µ V , � V ) can be partitioned in two, that

is, � =
�
� �

Š � V
, � �

� V

� �
� Rq, where� Š� V is the vector

of parameters excluding the parameters associated with� V
and � � V are the parameters that build� V . Note that� Š� V

includes all purely spatial parameters andµ V . We found that
the parameters associated withµ V should not be estimated
alongside those of� V , otherwise, the MLE or REML estimates
will converge to a local maximum and we might obtain estimates
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that are far from the true value. The elements of� are estimated
sequentially as follows:

Step 1: Initialize� V and run the optimization through the
candidate vectors� Š� V and �nd �� Š� V that maximizes
(16). This is likened to �tting a frozen �eld multiple
advections model.

Step 2: Fit the non-frozen �eld version of the frozen multiple
advections model in Step 1 by �nding�� � V that maxi-
mizes (16) while �xing the other parameters to�� Š� V .
To ensure� V remains positive de�nite, its entries are
parameterized via its Cholesky decomposition.

Once �� =
�

��
�
Š � V

, ��
�
� V

� �
is obtained, we solve for

�� GLS, where �� GLS is the vector of estimates of the regression
coe�cients via generalized least squares (GLS) of the form
�� GLS = { X� � ( �� )Š1X}Š1X� � ( �� )Š1Y and loop again
through the above multi-step estimation of� . The procedure is
terminated when a stopping criterion is reached.

We simulate 100 realizations of Gaussian bivariate spatio-
temporal random �elds of the form (1) with µ i(s, t) = µ i(s) =
0.5+ 0.5sx + 0.5sy, i = 1, 2, andZ(s, t) has a cross-covariance
function given inTheorem 2, with purely spatial parameters
as in Figure 1and � = 0.6, on a 20× 20 grid in the unit
square, at timet = 0, 1,. . . , 4. We set E(V11) = (0.1, 0.1)� ,
E(V22) = (Š0.2,Š0.2)� , and V11 and V22 to be indepen-
dent random vectors.Figure 3plots the estimates obtained
using the proposed multi-step estimation under MLE (17) and
REML (16). Note that we denote the entries ofµ V and� V as
µ V = (µ 1,µ 2,µ 3,µ 4)� and� V = (� ij )4

i,j= 1, respectively. The
boxplots show that despite having 26 parameters to estimate, the
proposed estimation procedure was able to obtain parameter
estimates that are satisfactorily close to the true values both
under MLE and REML. However, the variances of the parameter
estimates, especially those associated with the mean function,
tend to be smaller under REML. Hence, we employ REML in
the remainder of this article.

When the observations atN spatial locations are obtained
at regular intervals and there is negligible dependence between
observations that are very distant in the temporal sense, accord-
ing to Stein (2005b), for large number of temporal locations,T,
(16) can be approximated as

lREML(� , � ;Y) 
 lREML(� , � ;Y1,t� )

+
T�

j= t� + 1

lREML(� , � ;Yj|YjŠt� ,jŠ1), (18)

whereYa,b = (Y�
a , . . . ,Y�

b )� � RNpt� , Yt = { Y(s1, t)� , . . . ,
Y(sN, t)� }� � RNp, for a < b, andt� speci�es the number of
consecutive temporal locations included in the conditional dis-
tribution. Here lREML(� , � ;Yj|YjŠt� ,jŠ1) is the log-likelihood
function based only on the vector of spatio-temporal measure-
mentsYjŠt� ,jŠ1 =

�
Y�

jŠt� , . . . ,Y�
jŠ1

� � .

4. Simulation Study

Under the single advection setting and forp = 1, Salvaña
and Genton (2021) showed that when the components of

V � Nd(µ V, � V) have zero-mean, the same variance, and
are uncorrelated, that is,µ V = 0 and � V = � 2

VId, for any
� 2

V > 0, the univariate Lagrangian spatio-temporal models with
normal scale-mixtureCS reduce to univariate non-Lagrangian
spatio-temporal isotropic covariance functions belonging to
the Gneiting class (Gneiting2002). A breakdown on any
of the above-mentioned restrictions dichotomizes univariate
Lagrangian spatio-temporal models from their non-Lagrangian
counterparts. Their simulation studies can be adopted forp > 1
and similar conclusions can be drawn.

When faced with a multivariate Lagrangian spatio-temporal
random �eld with multiple advections, one can either �t multi-
variate Lagrangian spatio-temporal models with multiple advec-
tions, as in (8), or marginally �t on each variable a univari-
ate Lagrangian spatio-temporal model, as in (3). While it has
been shown in the literature that multivariate modeling gener-
ally yields lower prediction errors as the presence of the other
variables essentially increases the sample size of one variable
(Genton and Kleiber2015; Zhang and Cai2015; Salvaña et al.
2021), it remains to be explored how the dependence between
any two advection velocities a�ects prediction accuracy. To
answer this inquiry, we perform experiments to identify sce-
narios where multivariate Lagrangian spatio-temporal mod-
els with multiple advections are favorable over multiple uni-
variate Lagrangian spatio-temporal ones. Another objective of
this section is to show the consequences of using a bivariate
Lagrangian spatio-temporal cross-covariance function with sin-
gle advection to model a bivariate Lagrangian spatio-temporal
random �eld with advectionsV11 � Nd{E(V11), var(V11)} and
V22 � Nd{E(V22), var(V22)} such that E(V11) = E(V22) and
var(V11) = var(V22) but V11 �= V22. Such bivariate random
�elds appear to be driven by a single advection when in fact they
are not. The nature of dependence betweenV11 andV22 may or
may not be useful in modeling or prediction. In this section, we
aim to expose such consequences.

4.1. Design

All the simulation studies are framed under the assumption that
d = 2 andp = 2. Consider the following Lagrangian spatio-
temporal models:

€ M1: univariate Lagrangian spatio-temporal model in (4),
where CS is the Matérn covariance function with purely
spatial parameters� ,a, � ;

€ M2: bivariate Lagrangian spatio-temporal model with single
advection, that is,

Cij (h,u) =
�� ii � jj

�
|Id + � Vu2|

M
� �

h Š µ Vu
� �

�
Id + � Vu2� Š1 �

h Š µ Vu
�

;a, � ij
�
, i, j = 1, 2,

whereM (� h� ;a, �) is the univariate Matérn correlation with
spatial range and smoothness parametersa and � , respec-
tively; and

€ M3: bivariate Lagrangian spatio-temporal model with mul-
tiple advections in (9) and (10), whereCS

ij is the parsimo-
nious Matérn cross-covariance function, with purely spatial
parameters� , � ij ,a, � ij , i, j = 1, 2.
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